
1 CoCoME - The Common Component
Modeling Example

Sebastian Herold1, Holger Klus1, Yannick Welsch1, Andreas Rausch1, Ralf
Reussner2, Klaus Krogmann2, Heiko Koziolek2, Raffaela Mirandola3, Benjamin

Hummel4, Michael Meisinger4, Christian Pfaller4,

1 TU Clausthal, Germany
2 Universitt Karlsruhe, Germany

3 Politecnico di Milano, Italy
4 Technische Universität München, Germany

1.1 Introduction and System Overview

The example of use which was chosen as the Common Component Modeling
Example (CoCoME) and on which the several methods presented in this book
should be applied was designed according to the example described by Larman
in [1]. The description of this example and its use cases in the current chapter
shall be considered under the assumption that this information was delivered
by a business company as it could be in the reality. Therefore the specified
requirements are potentially incomplete or imprecise.

The mentioned example describes a Trading System as it can be observed
in a supermarket handling sales. This includes the processes at a single Cash
Desk like scanning products using a Bar Code Scanner or paying by credit card
or cash as well as administrative tasks like ordering of running out products or
generating reports. The following section gives a brief overview of such a Trading
System and its hardware parts. Its required use cases and software architecture
are described later in this chapter.

The Cash Desk is the place where the Cashier scans the goods the Customer
wants to buy and where the paying (either by credit card or cash) is executed.
Furthermore it is possible to switch into an express checkout mode which allows
only Costumer with a few goods and also only cash payment to speed up the
clearing. To manage the processes at a Cash Desk a lot of hardware devices are
necessary (compare figure 1).

Using the Cash Box which is available at each Cash Desk a sale is started
and finished. Also the cash payment is handled by the Cash Box. To manage
payments by credit card a Card Reader is used. In order to identify all goods
the Customer wants to buy the Cashier uses the Bar Code Scanner. At the end
of the paying process a bill is produced using a Printer. Each Cash Desk is also
equipped with a Light Display to let the Costumer know if this Cash Desk is
in the express checkout mode or not. The central unit of each Cash Desk is
the Cash Desk PC which wires all other components with each other. Also the
software which is responsible for handling the sale process and amongst others
for the communication with the Bank is running on that machine.

Store

Cash Desk Line

Cash Desk

Cash Box

Card Reader

Printer

Light Display

Bar Code

Scanner

Cash Desk PC

Cash Desk

Cash Desk

Cash Desk

Cash Desk

Store Server

Bank

Store Client

Fig. 1. The hardware components of a single Cash Desk.

Cash Box

Card Reader

Printer

Light Display

Bar Code
Scanner

Cash Desk PC

Cash Desk

Cash Desk

Cash Desk

Cash Desk

Store Server

Store Client

Fig. 2. An overview of entities in a store which are relevant for the Trading System.

Store

Store

Store

Store

Enterprise
Server

Enterprise Client

Fig. 3. The enterprise consists of several stores, an enterprise server and an enterprise
client.

A Store itself contains of several Cash Desks whereas the set of Cash Desks is
called Cash Desk Line here. The Cash Desk Line is connected to a Store Server
which itself is also connected to a Store Client (compare figure 2). The Store
Client can be used by the manager of the Store to view reports, order products
or to chance the sales prices of goods. The Store Server also holds the Inventory
of the corresponding Store.

A set of Stores is organized in an Enterprise where an Enterprise Server
exists to which all Stores are connected (compare figure 3). With the assistance
of an Enterprise Client the Enterprise Manager is able to generate several kinds
of reports.

1.2 Functional Requirements and Use Case Analysis

In this section the considered use cases of the Trading System are introduced
which are depicted in figure 4 with the involved actors. Each use case is de-
scribed using a uniform template which includes a brief description of the use
case itself, the standard process flow and its alternatives. Moreover, informa-
tion like preconditions, postconditions and the trigger of the use cases are given.
In the description of the use cases the codes in the squared brackets refer to
extra-functional properties in section 1.3.

Customer

Cashier

StoreManager

TradingSystem

UC 2:ManageExpressCheckout
«extend»

<<system>>

Bank
CardReader CashBox BarCodeScanner LightDisplay

Condition:

extension point:

{50% of all sales during the last 60 minutes meet the

requirements of an express checkout

- up to 8 products per sale

- customer pays cash}

ManageExpressCheckout

UC 3:OrderProducts

UC 1:ProcessSale

ManageExpressCheckout

UC 4: ReceiveOrderedProducts

UC 5:ShowStockReports

UC 7:ChangePrice

Printer

UC 6:ShowDeliveryReports

StockManager

EnterpriseManager

UC 8: ProductExchange

Fig. 4. An overview of all considered use cases of the Trading System.

UC 1 - Process Sale

Brief Description At the Cash Desk the products a Customer wants to buy are
detected and the payment - either by credit card or cash - is performed.

Involved Actors Customer, Cashier, Bank, Printer, Card Reader, Cash Box, Bar
Code Scanner, Light Display

Precondition The Cash Desk and the Cashier are ready to start a new sale.

Trigger Coming to the Cash Desk a Costumer wants to pay his chosen product
items.

Postcondition The Customer has paid, has received the bill and the sale is
registered in the Inventory.

Standard Process

1. The Customer arrives at the Cash Desk with goods to purchase. [arr1]
2. The Cashier starts a new sale by pressing the button Start New Sale at the

Cash Box. [t12-1]
3. The Cashier enters the item identifier. This can be done manually by using

the keyboard of the Cash Box [p13-1, t13-1] or by using the Bar Code Scanner
[p13-2, t13-2].

4. Using the item identifier the System presents the corresponding product
description, price, and running total. [t14-1]
The steps 3-4 are repeated until all items are registered. [n11-2]

5. Denoting the end of entering items the Cashier presses the button Sale Fin-
ished at the Cash Box. [t15-1]
(a) To initiate cash payment the Cashier presses the button Cash Payment

at the Cash Box. [p15-1,t15a-1]
i. The Customer hands over the money for payment. [t15a1-1]
ii. The Cashier enters the received cash using the Cash Box and con-

firms this by pressing Enter. [t15a2-1]
iii. The Cash Box opens. [t15a3-1]
iv. The received money and the change amount are displayed [t15a4-1],

and the Cashier hands over the change. [t15a4-2]
v. The Cashier closes the Cash Box. [t15a5-1]

(b) In order to initiate card payment the Cashier presses the button Card
Payment at the Cash Box. [p15-2, t15b-1]
i. The Cashier receives the credit card from the Customer [t15b1-1]

and pulls it through the Card Reader. [t15b1-2]
ii. The Customer enters his PIN using the keyboard of the card reader

and waits for validation. [t15b2-1]
The step 5.b.ii is repeated until a successful validation or the Cashier
presses the button for cash payment. [t15b2-2, n15b2-1]

6. Completed sales are logged by the Trading System and sale information are
sent to the Inventory in order to update the stock. [t16-1]

7. The Printer writes the receipt and the Cashier hands it out to the Costumer.
[t17-1]

8. The Customer leaves the Cash Desk with receipt and goods.

Alternative or Exceptional Processes

– In step 3: Invalid item identifier if the system cannot find it in the Inventory.
[p13-4]
1. The System signals error and rejects this entry. [t13-3]
2. The Cashier can respond to the error as follows:

(a) It exists a human-readable item identifier: [p13-5]
i. The Cashier manually enters the item identifier. [t13-4]
ii. The System displays the description and price. [t14-1]

(b) Otherwise the product item is rejected. [p13-6]
– In step 5.b: Card validation fails. [p15b2-2]

1. The Cashier and the Customer try again and again.
2. Otherwise the Cashier requires the Customer to pay cash.

– In step 6: Inventory not available. [p16-1]
The System caches each sale and writes them into the Inventory as soon as
it is available again. [t161-1]

UC 2 - Manage Express Checkout

Brief Description If some conditions are fulfilled a Cash Desk automatically
switches into an express mode. The Cashier is able to switch back into normal
mode by pressing a button at his Cash Desk. To indicate the mode the Light
Display shows different colors.

Involved Actors Cashier, Cash Box, Light Display, Card Reader

Precondition The Cash Desk is either in normal mode and the latest sale was
finished (case 1) or the Cash Desk is in express mode (case 2).

Trigger This use case is triggered by the system itself.

Postcondition The Cash Desk has been switched into express mode or normal
mode. The Light Display has changed its color accordingly.

Standard Process

1. The considered Cash Desk is in normal mode [p2-1] and just finished a sale
which matches the condition of an express checkout sale. Now 50% of all
sales during the last 60 minutes fulfill the condition for an express checkout.
(a) This Cash Desk, which has caused the achievement of the condition, is

switched into express mode. [t21a-1]

(b) Furthermore the corresponding Light Display is switched from black into
green to indicate the Cash Desk’s express mode. [t21b-1]

(c) Paying by credit card is not possible anymore. [t21c-1]
(d) The maximum of items per sale is reduced to 8 and only paying by cash

is allowed. [t21d-1]
2. The Cash Desk is in express mode [p2-2] and the Cashier decides to change

back into normal mode.
(a) The Cashier presses the button Disable Express Mode. [t22a-1]
(b) The color of the Light Display is changed from green into black color.

[t22b-1]
(c) Cash and also card payment is allowed and the Costumer is allowed to

buy as much goods as he likes. [t22c-1]

UC 3 - Order Products

Brief Description The Trading System provide the opportunity to order product
items.

Involved Actors Store Manager

Precondition An Overview over the Inventory is available and the Store Client
was started.

Trigger The Store Manager decided to buy new product items for his store.

Postcondition The order was placed and a generated order identifier was pre-
sented to the Store Manager.

Standard Process

1. A list with all products [n3-1] and a list with products running out of stock
are shown. [n3-2, p3-1, t31-1]

2. The Store Manager chooses the product items to order and enters the cor-
responding amount. [t32-1]

3. The Store Manager presses the button Order at the Store Client’s GUI.
[t33-1]

4. The appropriate suppliers are chosen and orders for each supplier are placed.
An order identifier is generated for each order and is shown to the Store
Manager. [t34-1, t34-2, t34-3]

UC 4 - Receive Ordered Products

Brief Description Ordered products which arrive at the Store have to be checked
for correctness and inventoried.

Involved Actors Stock Manager

Precondition The Store Client was started and the part Inventory of the Trading
System is available.

Trigger The ordered products arrive at the Store.

Postcondition The Inventory is updated with the ordered products.

Standard Process

1. Ordered products arrive at the stock attached by an order identifier which
has been assigned during the ordering process. [n4-1]

2. The Stock Manager checks the delivery for completeness and correctness.
[p4-1, t42-1]

3. In the case of correctness, the Stock Manager enters the order identifier and
presses the button Roll in received order. [t43-1]

4. The Trading System updates the Inventory. [t44-1]

Alternative or Exceptional Processes

– In step 2: Delivery not complete or not correct. [p4-2]
The products are sent back to the supplier and the Stock Manager has to
wait until a correct and complete delivery has arrived. This action does not
recognized by the System.

UC 5 - Show Stock Reports

Brief Description The opportunity to generate stock-related reports is provided
by the Trading System.

Involved Actors Store Manager

Precondition The reporting GUI at the Store Client has been started.

Trigger The Store Manager wants to see statistics about his store.

Postcondition The report for the Store has been generated and is displayed on
the reporting GUI.

Standard Process

1. The Store Manager enters the store identifier and presses the button Create
Report. [t51-1]

2. A report including all available stock items in the store is displayed. [t52-1]

UC 6 - Show Delivery Reports

Brief Description The Trading System provides the opportunity to calculate the
mean times a delivery from each supplier to an considered enterprise takes.

Involved Actors Enterprise Manager

Precondition The reporting GUI at the Store Client has been started.

Trigger The Enterprise Manager wants to see statistics about the enterprise.

Postcondition The report for the Enterprise has been generated and is displayed
to the Enterprise Manager.

Standard Process

1. The Enterprise Manager enters the enterprise identifier and presses the but-
ton Create Report. [t61-1]

2. A report which informs about the mean times is generated. [t62-1]

UC 7 - Change Price

Brief Description The System provides the opportunity to change the sales price
for a product.

Involved Actors Store Manager

Precondition The store GUI at the Store Client has been started.

Trigger The Store Manager wants to change the sales price of a product for his
store.

Postcondition The price for the considered product has been changed and it will
be sold with the new price now.

Standard Process

1. The System presents an overview over all available products in the store.
[t71-1]

2. The Store Manager selects a product item [t72-1] and changes its sales price.
[t72-2]

3. The Store Manager commits the change by pressing ENTER. [t73-1]

UC 8 - Product Exchange (on low stock) Among Stores

Brief Description If a store runs out of a certain product (or a set of products;
“required good”), it is possible to start a query to check whether those products
are available at other Stores of the Enterprise (“providing Stores”). Therefore
the Enterprise Server and the Store Servers need to synchronize their data on
demand (one scheduled update per day or per hour is not sufficient). After a
successful query the critical product can be shipped from one to other Stores. But
it has to be decided (using heuristics to compute the future selling frequency),

whether the transportation is meaningful. For example, if the product is propably
sold out at all Stores within the same day, a transportation does not make sense.

Expressed in a more technical way one Store Server is able to start a query at
the Enterprise Server. The Enterprise Server in turn starts a query for products
available at other Stores. As the Enterprise Server does not have the current
global data for Stores at any time (due to a write caching latency at the Store
Servers) the Enterprise Server has to trigger all Store Servers to push their local
data to the Enterprise Server.

Involved Actors This use case is not an end-user use case. Only servers are
involved.

Precondition The Store Server with the shortage product is able to connect to
the Enterprise Server.

Trigger This use case is triggered by the system itself.

Postcondition The products to deliver are marked as incoming or unavailable,
respectively, in the according Stores.

Standard Process

1. A certain product of the Store runs out.
2. The Store Server recognizes low stock of the product. [t82-1]
3. The Store Server sends a request to the Enterprise Server (including an

identification of the shortage products, and a Store id) [t83-1]
4. The Enterprise Server triggers all Stores that are “near by” (e. g. ¡300 km)

the requiring store, to flush their local write caches. So the Enterprise Server
database gets updated by the Store Server. [t84-1, t84-1]

5. The Enterprise Server does a database look-up for the required products to
get a list of products (including amounts) that are available at providing
Stores. [t85-1]

6. The Enterprise Server applies the “optimization criterion” (specified above)
to decide, whether it is meaningful to transport the shortage product from
one store to another (heuristics might be applied to minimize the total costs
of transportation). This results in a list of products (including amounts) per
providing store that have to be delivered to the requiring Store. [t86-1]

7. The Store Server, initially sending the recognition of the shortage product,
is provided with the decision of the Enterprise Server. [t87-1]
(a) The required product is marked as incoming. [t87-2]

8. The Store Server of a near by Store is provided with information that it has
to deliver the product. [t88-1]
(a) The required product is marked as unavailable in the Store. [t88-2]

Alternative or Exceptional Processes

– The Enterprise Server is not available: The request is queued until the En-
terprise Server is available and then is send again.

– One or more Store Servers are not available: The Enterprise Server queues the
requests for the Store Servers until they are available and then resend them.
If a Store Server is not available for more than 15 minutes the request for
this Server is canceled. It is assumed, that finally unavailable Store Servers
do not have the required product.

Extension on use case 8 - Remove Incoming Status

Brief Description If the first part of use case 8 (as described above) has passed,
for moved products an amount marked as incoming remains at the Inventory of
the Store receiving the products. An extension allows to change that incoming
mark via a user interface at the Store Client if the moved products arrive at a
Store.

Precondition The Inventory is available and the Store Client has been started.

Trigger The moved products (according to UC8) arrive at the Store.

Postcondition For the amount of incoming products the status ”incoming” is
removed in the Inventory.

Standard Process

1. The products arrive at the stock of the Store.
2. For all arriving products the Stock Manager counts the incoming amount.
3. For every arriving product the Stock Manager enters the identifier and its

amount into the Store Client.
4. The system updates the Inventory.

Alternative or Exceptional Processes

– If the entered amount of an incoming product is larger than the amount
accounted in the Inventory, the input is rejected. The incoming amount has
to be re-entered.

1.3 Extra-Functional Properties

The following table includes CoCoME’s extra-functional properties in terms of
timing, reliability, and usage profile related information. They can be seen as
guiding values when conducting QoS-analysis with CoCoME. The results from
different methods can be compared more adequately if they are based on the
same extra-functional properties.

The extra-functional properties map to certain steps in the use cases and have
labels to illustrate the relationship (e.g., t12-3 stands for ”use case 1 step 2, time
no. 3”). As a notation for the values, we have used the tagged value language from
the OMG UML Profile for Schedulability, Performance, and Time [2]. We have
used the tags PAperfValue [2, p.7-21] for timing values and RTarrivalPattern
[2, p.4-35] for customer arrival rates, as they allow a fine-grained specification
of probability distributions. Note for histogram specifications: ”The histogram
distribution has an ordered collection of one or more pairs that identify the start
of an interval and the probability that applies within that interval (starting from
the leftmost interval) and one end-interval value for the upper boundary of the
last interval”[2, p.4-34].

The values in the table are either assumed (’assm’) by us or required (’req’)
from the system as part of the specification. We estimated most of the values
based on statistics for typical German super markets, and our own experience.
The values should be understood as guiding values and should not restrict Co-
CoME modelers from using their own extra-functional properties for CoCoME.

CoCoME Overall
n0-1: Number of stores
200
n0-2: Cash desks per store
8

UC1 - Process Sale
arr1: Customer arrival rate per store
PAopenLoad.PAoccurrence = (’unbounded’, (’exponential’, 320.0, ’hr’))
n11-1: Number of open cash desks per store
(’assm’, ’dist’, (’histogram’, 0, 0.1, 2, 0.2, 4, 0.4, 6, 0.3, 8, ’#Open Cash Desks’))
n11-2: Number of goods per customer
(’assm’, ’dist’, (’histogram’, 1, 0.3, 8, 0.1, 15, 0.15, 25, 0.15, 50, 0.2, 75, 0.1,
100, ’#Goods per Customer’))
t12-1: Time for pressing button ”Start New Sale”
PAdemand = (’assm’, ’mean’, (1.0, ’s’))
t13-1: Time for scanning an item
PAdemand = (’assm’, ’dist’, (’histogram’, 0.0, 0.9, 0.3, 0.05, 1.0, 0.04, 2.0, 0.01,
5.0, ’s’))
t13-2: Time for manual entry
PAdemand = (’assm’, ’mean’, (5.0, ’s’))
t13-3: Time for signaling error and rejecting an ID
PAdemand = (’req’, ’mean’, (10, ’ms’))
t13-4: Time for manually entering the item identifier after error
PAdemand = (’assm’, ’mean’, (5.0, ’s’))
p13-1: Probability of using the bar code scanner per item
0.99
p13-2: Probability of manual entry per item

Continued on next page

0.01
p13-3: Probability of valid item ID
0.999
p13-4: Probability of invalid item ID
0.001
p13-5: Probability of human-readable item ID
0.9
p13-6: Probability of rejecting an item
0.1
t14-1: Time for showing the product description, price, and running total
PAdemand = (’req’, ’mean’, (10, ’ms’))
t15-1: Time for pressing button ”Sale Finished”
PAdemand = (’assm’, ’mean’, (1.0, ’s’))
t15a-1: Time for pressing button ”Cash Payment”
PAdemand = (’assm’, ’mean’, (1.0, ’s’))
t15a1-1: Time for handing over the money
PAdemand = (’assm’, ’dist’, (’histogram’, 2.0, 0.3, 5.0, 0.5, 8.0, 0.2, 10.0, ’s’))
t15a2-1: Time for entering the cash received and confirming
PAdemand = (’assm’, ’mean’, (2.0, ’s’))
p15-1: Probability of cash payment
0.5
p15-2: Probability of credit card payment
0.5
n15b2-1: Number of times a customer has to enter the PIN
(’assm’, ’dist’, (’histogram’, 1, 0.9, 2, 0.09, 3, 0.01, 4, ’times entering PIN’))
p15b2-1: Probability of valid CC id
0.99
p15b2-2: Probability of invalid CC id
0.01
t15a3-1: Time for opening the cash box
PAdemand = (’assm’, ’mean’, (1.0, ’s’))
t15a4-1: Time until displaying received money and change amount
PAdemand = (’req’, ’mean’, (10, ’ms’))
t15a4-2: Time for handing over the change
PAdemand = (’assm’, ’dist’, (’histogram’, 2.0, 0.2, 3.0, 0.6, 4.0, 0.2, 5.0, ’s’))
t15a5-1: Time for closing the cash box
PAdemand = (’assm’, ’mean’, (1.0, ’s’))
t15b-1: Time for pressing button ”Card Payment”
PAdemand = (’assm’, ’mean’, (1.0, ’s’))
t15b1-1: Time for receiving the credit card
PAdemand = (’assm’, ’dist’, (’histogram’, 3.0, 0.6, 4.0, 0.4, 5.0, ’s’))
t15b1-2: Time for pulling the credit card through the reader
PAdemand = (’assm’, ’mean’, (2.0, ’s’))

Continued on next page

t15b2-1: Time for entering the PIN
PAdemand = (’assm’, ’dist’, (’uniform’, 1.0, 5.0, ’s’))
t15b2-2: Time waiting for validation
PAdemand = (’assm’, ’dist’, (’histogram’, 4.0, 0.9, 5.0, 0.1, 20.0, ’s’))
t16-1: Time for sending sale information and updating stock
PAdemand = (’req’, ’mean’, (100, ’ms’))
t161-1: Time for writing cached sales logs after inventory is back up
PAdemand = (’req’, ’mean’, (2, ’s’))
p16-1: Probability of Failure on Demand of Inventory System
0.001
t17-1: Time for printing the receipt and handing it out
PAdemand = (’assm’, ’mean’, (3.0, ’s’))

UC2 - Manage Express Checkout
arr-2: Manage Express Checkout arrival rate
PAopenLoad.PAoccurrence = (’unbounded’, (’exponential’, 1, ’hr’))
p2-1: Probability of being in normal mode
0.8
p2-2: Probability of being in express mode
0.2
t21a-1: Time for switching to express mode
PAdemand = (’req’, ’mean’, (10, ’ms’))
t21b-1: Time for switching light display
PAdemand = (’req’, ’mean’, (10, ’ms’))
t21c-1: Time for deactivating credit card payment
PAdemand = (’req’, ’mean’, (10, ’ms’))
t21d-1: Time for setting the maximum number of items
PAdemand = (’req’, ’mean’, (10, ’ms’))
t22a-1: Time for pressing button ”Disable Express Mode”
PAdemand = (’assm’, ’mean’, (1.0, ’s’))
t22b-1: Time for switching light display
PAdemand = (’req’, ’mean’, (10, ’ms’))
t22c-1: Time for reactivating credit card payment
PAdemand = (’req’, ’mean’, (10, ’ms’))

UC3 - OrderProducts
arr-3: Order arrival rate
PAopenLoad.PAoccurrence = (’unbounded’, (’exponential’, 1, ’days’))
n3-1: Number of all products
5000
n3-2: Number of products running out of stock
(’assm’, ’dist’, (’histogram’, 100, 0.25, 200, 0.25, 300, 0.25, 400, 0.25, 500
’#Goods out of stock’))

Continued on next page

p3-1: Percentage of out of stock products being reordered
0.98
t31-1: Time until showing the lists of all products and missing products
PAdemand = (’req’, ’mean’, (10, ’ms’))
t32-1: Time for choosing the products to order and entering the amount
PAdemand = (’assm’, ’mean’, (10, ’s’))
t33-1: Time for pressing button ”Order”
PAdemand = (’assm’, ’mean’, (1, ’s’))
t34-1: Time for querying the inventory data store
PAdemand = (’req’, ’mean’, (20, ’ms’))
t34-2: Time for creating a new order entry
PAdemand = (’req’, ’mean’, (10, ’ms’))
t34-3: Time for creating a new product order
PAdemand = (’req’, ’mean’, (10, ’ms’))

UC4 - Receive Ordered Products
arr-4: Order arrival rate
PAopenLoad.PAoccurrence = (’unbounded’, (’exponential’, 1, ’days’))
n-4: Number of products arriving
(’assm’, ’dist’, (’histogram’, 100, 0.25, 200, 0.25, 300, 0.25, 400, 0.25, 500
’#Goods arriving’))
p4-1: Probability of complete and correct order
0.99
p4-2: Probability of incomplete or incorrect order
0.01
t42-1: Time for checking completeness of order
PAdemand = (’assm’, ’mean’, (30, ’min’))
t43-1: Time for pressing button ”Roll in received order”
PAdemand = (’assm’, ’mean’, (1, ’s’))
t44-1: Time for updating the inventory
PAdemand = (’assm’, ’mean’, (100, ’ms’))

UC5 - Show Stock Reports
arr-5: Show Stock Reports arrival rate
PAopenLoad.PAoccurrence = (’unbounded’, (’exponential’, 3, ’hr’))
t51-1: Time for entering store id and pressing button ”Create Report”
PAdemand = (’assm’, ’mean’, (1, ’s’))
t52-1: Time for generating the report
PAdemand = (’req’, ’mean’, (0.5, ’s’))

UC6 - Show Delivery Reports
arr-6: Show Delivery Reports arrival rate
PAopenLoad.PAoccurrence = (’unbounded’, (’exponential’, 1, ’days’))

Continued on next page

t61-1: Time for entering store id and pressing button ”Create Report”
PAdemand = (’assm’, ’mean’, (1, ’s’))
t62-1: Time for generating the report
PAdemand = (’req’, ’mean’, (0.5, ’s’))

UC7 - Change Price
arr-7: Change Price arrival rate
PAopenLoad.PAoccurrence = (’unbounded’, (’exponential’, 3, ’hr’))
t71-1: Time for generating the overview
PAdemand = (’req’, ’mean’, (10, ’ms’))
t72-1: Time for selecting a product item
PAdemand = (’assm’, ’mean’, (5, ’s’))
t72-2: Time for changing the sales price
PAdemand = (’assm’, ’mean’, (5, ’s’))
t73-1: Time for pressing button ”Enter”
PAdemand = (’assm’, ’mean’, (1, ’s’))

UC8 - Product Exchange
arr-8: Show Stock Reports arrival rate
PAopenLoad.PAoccurrence = (’unbounded’, (’exponential’, 1, ’days’))
n8-1: Number of stores nearby for a store server
(’assm’, ’dist’, (’histogram’, 10, 0.7, 20, 0.3, 30 ’#Shops nearby’))
p8-1: Probability of failure on demand (enterprise server)
0.0001
p8-2: Probability of failure on demand (store server)
0.001
t82-1: Time for store server to detect low stock
PAdemand = (’req’, ’mean’, (10, ’ms’))
t83-1: Time for store server to query enterprise server
PAdemand = (’assm’, ’dist’, (’histogram’, 0.0, 0.5, 0.5, 0.5, 1.0, ’s’))
t84-1: Time for enterprise server to query one store server
PAdemand = (’assm’, ’dist’, (’histogram’, 0.0, 0.5, 0.5, 0.5, 1.0, ’s’))
t84-2: Time for flushing the cache of one store server and returning the result
PAdemand = (’assm’, ’dist’, (’histogram’, 0.0, 0.5, 0.5, 0.5, 1.0, ’s’))
t85-1: Time for database lookup at enterprise server
PAdemand = (’req’, ’mean’, (10, ’ms’))
t86-1: Time for determining which store to deliver from
PAdemand = (’req’, ’mean’, (1, ’s’))
t87-1: Time for returning the result to the store server
PAdemand = (’assm’, ’dist’, (’histogram’, 0.0, 0.5, 0.5, 0.5, 1.0, ’s’))
t87-2: Time for marking goods as incoming at store server
PAdemand = (’req’, ’mean’, (10, ’ms’))
t88-1: Time for sending delivery request to store server

Continued on next page

PAdemand = (’assm’, ’dist’, (’histogram’, 0.0, 0.5, 0.5, 0.5, 1.0, ’s’))
t88-2: Time for marking good as unavailable
PAdemand = (’req’, ’mean’, (10, ’ms’))

Table 1: CoCoME - Extra-functional Properties

1.4 Architectural Component Model

In this section, the architecture of the Trading System is described in more
detail using UML 2.0 ([2]) with additional own notations like multiplicities at
ports. After an overview of the structure of the system which introduces single
parts, like interfaces and connections between them, an overview of the behav-
ior is given. To show the structure the single components beginning with the
topmost, namely the component TradingSystem, and going on with the inner,
more detailed components are beheld. For every use case the behavior of the sys-
tem is visualized by sequence diagrams. Additional, a prototype of the system
was implemented. As far as the real subject is meant, the name of it is written
separately. The names of software components are written in one word.

Structural View on the Trading System

The structure of the Trading System is designed to integrate an embedded sys-
tem based on a bus-architecture and an information system based on a layered
architecture. Figure 5 shows the super-component TradingSystem and the two
components Inventory and CashDeskLine TradingSystem consists of.

«component»

TradingSystem

«component»

:CashDeskLine

«component»

:Inventory

BankIf
1

1

Bank

11

CashDeskConnectorIf

1

1

SaleRegisteredEvent

1

1

Fig. 5. TradingSystem and its two components Inventory and CashDeskLine.

The information system is represented by the component Inventory, while the
component CashDeskLine represents the embedded system. For each instance of
TradingSystem exists respectively one instance of Inventory and CashDeskLine
which is indicated by the number in the upper left of the components. Also visible
is the fact that the communication between the components CashDeskLine and

Inventory is handled by the interfaces CashDeskConnectorIf and SaleRegistere-
dEvent. The interface CashDeskConnectorIf defines a method for getting product
information like description and price using the product bar code. Events like
starting a new sale are registered at an asynchronous event channel. To handle
these events the event SaleRegisteredEvent is used. Furthermore, CashDeskLine
is connected to the bank via an interface BankIf in order to handle the card
payment.

Structural View on the component Inventory As already mentioned, the
component Inventory represents the information system and is organized as a
layered architecture. As shown in figure 6, these layers are GUI, Application and
Data which are completed by a component Database.

«component»

TradingSystem::Inventory

«component»

:Application

«component»

:GUI

ReportingIf

«component»

:Data

CashDesk
ConnectorIf

«component»

:Database

JDBC

EnterpriseQueryIf
StoreQueryIf

1

1

1

1

1

*

1

*

*

*

1

1

1

1

CashDesk
ConnectorIf

SaleRegistered
Event SaleRegistered

Event

ComplexOrderEntryTO
ComplexOrderTO
OrderEntryTO
OrderTO
ProductTO
ProductWithStockItemTO
ProductWithSupplierAndStockItemTO
ProductWithSupplierTO
SaleTO
StockItemTO
StoreWithEnterpriseTO
SupplierTO StoreIf

1

StoreTO
EnterpriseTO
ReportTO

TradingEnterprise
ProductSupplier

OrderEntry
ProductOrder
StockItem
Store
Product

1

1

PersistenceIf

Fig. 6. The inner structure of the component Inventory. The notes show the data types
which are relevant for the corresponding interface.

For each instance of Inventory exists only one instance of the component
Database where all data is stored. Because of the case having only one instance
of Inventory in TradingSystem there in all exists only one instance of Database
per instance of TradingSystem. The component Data representing the data layer
of a classical three-layer-architecture hides details of the database and provides
data access to the application layer represented by the component Application.
The communication between the components Database and Data is managed by

JDBC ([3]) in connection with Hibernate ([4]), an implementation of the Java
Persistence API ([5]).

The component Data provides the three interfaces EnterpriseQueryIf, Store-
QueryIf and PersistenceIf. To get a persistence context the interface PersistenceIf
offers an appropriate method. The interface EnterpriseQueryIf contains queries
like the mean time to delivery by taking all stores of an enterprise into account.
StoreQueryIf defines methods required at a Store like changing the sales price
of a product or managing the Inventory.

The component Application contains the application logic. It uses the in-
terfaces defined by the component Data in order to send queries or changes
to the database and provides the interfaces StoreIf and ReportingIf to deliver
results of database queries to the component GUI. Between the components
Application and Data object-oriented interfaces and between Application and
GUI services-oriented interfaces are used (EnterpriseQueryIf and StoreQueryIf
respectively StoreIf and ReportingIf). As it is determined as a property of a
service-oriented interfaces via the interfaces between Application and GUI no
references are passed. Instead, so called Transfer Objects (TO) are defined which
are used for the data transfer. The component Application itself has references
on data objects located in the component Data in order to receive required data.

Data Layer Figure 7 shows an overview of the component Data with its three
subcomponents Enterprise, Store and Persistence. These components implement
the similar named interfaces EnterpriseQueryIf, PersistenceIf and StoreQueryIf.
In figure 7 the various data types the interfaces deal with are shown as notes
whereas figure 8 gives a more detailed overview of the data model with attributes
and possible navigation paths.

«component»

TradingSystem::Inventory::Data

«component»

:Enterprise

«component»

:Store
StoreQueryIf

1

1
StoreQueryIf

1
1

EnterpriseQueryIf
EnterpriseQueryIf 1

1

TradingEnterprise
ProductSupplier

OrderEntry
ProductOrder
StockItem
Store
Product

«component»

:Persistence

1

PersistenceIf
PersistenceIf 1

1

Fig. 7. The inner structure of the data layer of the component Inventory.

TradingSystem::Inventory::Data::Store

ProductOrder

-id : long

-deliveryDate : Date

-orderingDate : Date

OrderEntry

-id : long

-amount : int

StockItem

-id : long

-salesPrice : double

-amount : int

-minStock : int

-maxStock : int

Store

-id : long

-name : String

-location : String

1

0..*
places

1

0..*has

1 0..*

owns

1

TradingSystem::Inventory::Data::Enterprise

Product

-id:long

-barcode : int

-purchasePrice : double

-name : String

ProductSupplier

-id : long

-name : String

0..* 0..*

has

1 0..*

offers

0

re
fe
rs
 t
o

1

0..*

is
S
to
c
k
e
d
A
s

1

TradingEnterprise

-id : long

-name : String

0..*

h
a
s

1

Fig. 8. The data model of the TradingSystem.

Application Layer The component Application representing the application layer
consists of the three components Reporting, Store and ProductDispatcher as
shown in figure 9. The component Reporting implements the interface ReportingIf
whereas the component Store implements the interfaces CashDeskConnectorIf
and StoreIf. It also requires the interfaces SaleRegisteredEvent and ProductDis-
patcherIf. The latter defines a method for the Enterprise Server to search for a
product at another Store.

While the communication between Data and Application is realized by pass-
ing references of persistent objects to the Application, the Application uses Po-
JOs (Plain old Java Objects) or Transfer Objects (TO) to pass information to
the GUI and to the CashDeskLine. An overview of all Transfer Objects and their
relation between each other is shown in figure 10.

GUI Layer As shown in figure 11 the component GUI has the two subcompo-
nents Reporting and store. The component Reporting implements the visualiza-
tion of various kinds of reports using the interface ReportingIf to get the data.
Whereas the component Store offers the user interface for the Store Manager in
order to do managing tasks like ordering products or changing the sale prices.

Structural View on the component CashDeskLine The component CashDeskLine
represents the embedded part. It is responsible for managing all Cash Desks,
their hardware, and the interaction between Cash Desks and between the de-
vices connected with each Cash Desk. The main communication is done using
events which are sent through event channels.

«component»

TradingSystem::Inventory::Application

«component»

:Reporting

«component»

:Store

StoreIf

ReportingIf 1

0..1

PersistenceIf

StoreQueryIf

StoreIf

ReportingIf
1

1

1

1

StoreTO
EnterpriseTO
ReportTO

EnterpriseQueryIf

OrderEntry
ProductOrder
StockItem
Store
Product

TradingEnterprise
ProductSupplier

ComplexOrderEntryTO
ComplexOrderTO
OrderEntryTO
OrderTO
ProductTO
ProductWithStockItemTO
ProductWithSupplierAndStockItemTO
ProductWithSupplierTO
SaleTO
StockItemTO
StoreWithEnterpriseTO
SupplierTO

1

1

1

1

1

1

1

CashDeskConnectorIf CashDesk
ConnectorIf

SaleRegisteredEvent

1

1

*

«component»

:ProductDispatcher

ProductDispatcherIf

1
1

1

1

Fig. 9. The inner structure of the application layer of the component Inventory.

org::cocome::tradingsystem::inventory::store

org::cocome::tradingsystem::inventory::reporting

ComplexOrderTO

OrderTO

#id : long
#deliveryDate : Date
#orderingDate : Date

StoreTO

#id : long
#name : String
#location : String

ComplexOrderEntryTO

OrderEntryTO

#amount : long

SaleTO

#date : Date

ProductTO

#id : long
#barcode : long
#purchasePrice : double
#name : String

ProductWithStockItemTOProductWithSupplierTO

StockItemTO

#id : long
#salesPrice : double
#amount : long
#minStock : long
#maxStock : long

0..1

EnterpriseTO

#id : long
#name : String

SupplierTO

#id : long
#name : String

ReportTO

#reportText : String

StoreWithEnterpriseTO

ProductWithSupplierAndStockItemTO

0..*

0..1
0..*

0..*

Fig. 10. The transfer objects used for data exchange between the application layer and
the GUI layer.

«component»

TradingSystem::Inventory::GUI

«component»

:Reporting

«component»

:Store

ReportingIf

StoreIf

1

0..1

ReportingIf

StoreIf

1

1

1

1

Fig. 11. The inner structure of the GUI layer of the component Inventory.

Figure 12 gives an overview of the structure of the component CashDeskLine.
It is shown that CashDeskLine consists of several instances of CashDesk and a
component EventBus which manages two instances of EventChannel, namely
cashDeskChannel and extCommChannel which are shared by all instances of
CashDesk. The channel cashDeskChannel is used by the CashDesk to enable
communication between all device controllers which are connected to a CashDesk,
like CashDeskApplication, LightDisplayController or CashDeskGUI. Each con-
troller itself is connected to the according hardware device and so builds the
bridge between the hardware and the middleware. The channel extCommChan-
nel is used by the component CashDeskApplication to write the information
about completed sales into the Inventory. Additionally, this channel is used for
the communication between the components Coordinator and CashDesk. The
Coordinator itself is responsible for dealing with managing express checkouts,
whereas its task is to decide if a Cash Desk has to be switched into express mode
(see use case 2).

As shown in figure 12, the component CashDeskApplication requires the
interface CashDeskConnectorIf. This interface is provided by the component In-
ventory and is used to get the product description and sales price by transferring
the bar code of a product. These information are required during the scanning
of product items the customer wants to buy (see use case 1).

Figure 13 shows again the components CashDesk consists of and, in addition,
the events each component sends and for which types of events each component
is registered at the channel. The semicircles indicate events the component can
handle while the circles indicate events which are sent by the component. For
example, the controller CardReaderController handles the event ExpressMod-
eEnabledEvent while sending the events CreditCardScannedEvent and PINEn-
teredEvent.

«component»

TradingSystem::CashDeskLine

«component»

:EventBus

«component»

cashDeskChannel:EventChannel

«component»

extCommChannel:EventChannel

«component»

:Coordinator

«component»

:CashDesk

«component»

:CardReaderController

«component»

:CashBoxController

«component»

:PrinterController

«component»

:ScannerController

«component»

:CashDeskGUI

«component»

:LightDisplayController

«component»

:CashDeskApplication

1 1 1 1 1 1 1

*

*

1

1

1

Used to access the Inventory
to get the product description
of the currently scanned product
using the barcode.

Events for finished
sales are sent through
this interface to the Inventory.

CashDesk
ConnectorIf

Fig. 12. The inner structure of the component CashDeskLine.

«component»

TradingSystem::CashDeskLine::CashDesk

«component»

:CardReaderController

«component»

:CashBoxController

«component»

:PrinterController

«component»

:ScannerController

«component»

:CashDeskGUI

«component»

:LightDisplayController

«component»

:CashDeskApplication

1 1 1 1 1 11

SaleStartedEvent
SaleFinishedEvent
PaymentModeEvent
CashAmountEnteredEvent
CashBoxClosedEvent
ExpressModeDisabledEvent

ChangeAmountCalculatedEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
ExpressModeDisabledEvent
ExpressModeEnabledEvent
InvalidCreditCardEvent
CreditCardScanFailedEvent
ProductBarcodeNotValidEvent
SaleSuccessEvent
SaleStartedEvent

ExpressModeEnabledEvent
ExpressModeDisabledEvent

CreditCardScannedEvent
PINEnteredEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
SaleStartedEvent
SaleFinishedEvent
CashBoxClosedEvent
SaleSuccessEvent

ProductBarcodeScannedEvent

ProductBarcodeNotValidEvent
RunningTotalChangedEvent
ChangeAmountCalculatedEvent
SaleRegisteredEvent
InvalidCreditCardEvent
ExpressModeEnabledEvent
SaleSuccessEvent
AccountSaleEvent
SaleRegisteredEvent

SaleStartedEvent
ProductBarcodeScannedEvent
SaleFinishedEvent
CashAmountEnteredEvent
CashBoxClosedEvent
CreditCardScannedEvent
PINEnteredEvent
ExpressModeEnabledEvent
ExpressModeDisabledEvent
PaymentModeEvent

ExpressModeEnabledEvent
ExpressModeDisabledEvent

Fig. 13. A more detailed view on the component CashDesk and its published and
subscribed events.

Deployment View on the Trading System

The deployment view of the Trading System zooms in on which devices are
considered and where the different components are instantiated. Each Cash Desk
is linked to an own Cash Desk PC. This Cash Desk PC is connected to several
devices like Bar Code Scanner or Card Reader. The controllers of these devices
run on the component CashDeskPC as well as all other subcomponents of the
component CashDesk shown in figure 14. Furthermore, on each CashDeskPC an
event channel is established which is used for the communication between the
peripheral devices.

In each Store exists one Store Server to which all Cash Desk PCs in this
Store are connected. At the component StoreServer the four components Coor-
dinator, extCommChannel, Application and Data and their subcomponents are
located. The first two components were presented in the section before and are
responsible for managing the express checkout respectively for the communica-
tion. The component Data representing the data layer is connected via JDBC
to the component Database which is placed at the component EnterpriseServer.
Representing the application layer the component Application is communicat-
ing with the component Inventory::GUI deployed at the component StoreClient.
In addition to the component Database, the component Data and the compo-
nent Reporting are deployed at EnterpriseServer. The component Data is also
connected to the component Database.

Behavioral View on the Trading System

This section provides a more detailed view of the realization of each use case
introduced before by using UML 2.0 sequence diagrams which show the inter-
action between actors and components. First an important notation aspect is
pointed out because of changes in the notation for sequence diagrams in UML
2.0. This considers the notation for synchronous and asynchronous method calls
where synchronous method calls are depicted using filled arrowheads, compared
to asynchronous method calls which are depicted using unfilled arrowheads.

Behavioral View on UC 1 - Process Sale The sequence diagrams in figures
15, 16 and 17 show the sale process including the communication between the
various involved components. The sale process starts when the Cashier presses
the button Start Sale at his Cash Box. Then the corresponding software compo-
nent CashBox calls a method at the component CashBoxController which pub-
lishes the SaleStartedEvent using the cashDeskChannel (compare figure 12). The
three components CashDeskApplication, PrinterController and CashDeskGUI
react to events of the kind SaleStartedEvent. In order to receive these they have
to register themselves at the channel cashDeskChannel for these events and im-
plement the according event handlers. These event handlers are called by the
messaging middleware which JMS ([6]) is in the implementation of the proto-
type. At the Cash Desk the Printer starts printing the header of the receipt
initiated by the component PrinterController and initiated by the component

Bank

StoreServer EnterpriseServer

StoreClient EnterpriseClient

«component»

:TradingSystem::Inventory::Data

«component»

:TradingSystem::Inventory::Application::Reporting

«component»

:TradingSystem::Inventory::Data

«component»

:TradingSystem::Inventory::GUI::Reporting

«component»

:TradingSystem::Inventory::GUI

*

1

*

1

*

1

*

1

CardReader

CashBox

LightDisplay

Printer

CashDeskPC

«component»

:TradingSystem::CashDeskLine::CashDesk

1

1

1

1

1

1

1

1

1

1

*

*

<<RMI>>

«component»

:TradingSystem::Inventory::Application

<<RS232>>

<<RS232>>

<<RS232>>

<<RS232>>

<<RS232>>

<<RMI>>

<<RMI>>

<<JDBC>>

<<RMI>>

«component»

:TradingSystem::Inventory:Database

«component»

:TradingSystem::CashDeskLine::Coordinator

«component»

extCommChannel:

TradingSystem::CashDeskLine::EventBus::EventChannel

«component»

cashDeskChannel:

TradingSystem::CashDeskLine::EventBus::EventChannel

BarCodeScanner

Fig. 14. The deployment of the Trading System.

:C
a
s
h
B
o
x :T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
C
a
s
h
B
o
x
C
o
n
tr
o
lle
r

:T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
C
a
s
h
D
e
s
k
G
U
I

:T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
C
a
s
h
D
e
s
k
A
p
p
lic
a
ti
o
n

:T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
P
ri
n
te
rC
o
n
tr
o
lle
r

:T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
S
c
a
n
n
e
rC
o
n
tr
o
lle
r

:B
a
rC
o
d
e
S
c
a
n
n
e
r

:T
ra
d
in
g
S
y
s
te
m
::
In
v
e
n
to
ry

s
e
n
d
S
a
le
S
ta
rt
e
d
E
v
e
n
t(
…
)

S
a
le
S
ta
rt
e
d
E
v
e
n
t(
)

S
a
le
S
ta
rt
e
d
E
v
e
n
t(
)

P
r o
d
u
c
tB
a
r C
o
d
e
S
c
a
n
n
e
d
E
v
e
n
t(
in
t
b
a
rc
o
d
e
)

g
e
tP
ro
d
u
c
tW
it
h
S
to
c
k
It
e
m
(l
o
n
g
 b
a
rc
o
d
e
)

P
ro
d
u
c
tW
it
h
S
to
c
k
It
e
m
T
O

R
u
n
n
in
g
T
o
ta
lC
h
a
n
g
e
d
E
v
e
n
t(

S
tr
in
g
 p
ro
d
u
c
tN
a
m
e
,
d
o
u
b
le

p
ro
d
u
c
tP
ri
c
e
,
d
o
u
b
le

ru
n
n
in
g
T
o
ta
l)

R
u
n
n
in
g
T
o
ta
lC
h
a
n
g
e
d
E
v
e
n
t(
S
tr
in
g
 p
ro
d
u
c
tN
a
m
e
,
d
o
u
b
le
 p
ro
d
u
c
tP
ri
c
e
,
d
o
u
b
le
 r
u
n
n
in
g
T
o
ta
l)

s
e
n
d
S
a
le
F
in
is
h
e
d
E
v
e
n
t(
…
)

S
a
le
F
in
is
h
e
d
E
v
e
n
t(
)

[C
u
s
to
m
e
r
w
a
n
ts
 t
o
 p
a
y
 b
y
 c
re
d
it
 c
a
rd
]

[C
u
s
to
m
e
r
w
a
n
ts
 t
o
 p
a
y
 c
a
s
h
]

a
lt

S
c
a
n
 p
ro
d
u
c
t
b
a
r
c
o
d
e

:C
a
s
h
ie
r P
re
s
s
 b
u
tt
o
n
 „
S
ta
rt

N
e
w
 S
a
le
“

S
a
le
S
ta
rt
e
d
E
v
e
n
t(
)

P
re
s
s
 b
u
tt
o
n
 „
S
a
le

F
in
is
h
e
d
“

c
a
lc
u
la
te
 r
u
n
n
in
g
 t
o
ta
l

p
ri
n
t
to
ta
l

P
re
s
s
 b
u
tt
o
n
 „
C
a
s
h

P
a
y
m
e
n
t“

P
re
s
s
 b
u
tt
o
n
 „
C
a
rd

P
a
y
m
e
n
t“

s
d

U
C
 1
:P
ro
c
e
s
s
 S
a
le

re
f

S
e
q
C
a
rd
P
a
y
m
e
n
t

re
f

S
e
q
C
a
s
h
P
a
y
m
e
n
t

S
a
le
F
in
is
h
e
d
E
v
e
n
t(
)

[w
h
ile
 m
o
re
 i
te
m
s
 t
o
 s
c
a
n
]

lo
o
p

s
e
n
d
P
ro
d
u
c
tB
a
rc
o
d
e
S
c
a
n
n
e
d
E
v
e
n
t(
…
)

F
ig

.
1
5
.
S
eq

u
en

ce
d
ia

g
ra

m
o
f
th

e
m

a
in

sa
le

p
ro

ce
ss

(U
C

1
).

CashDeskGUI a text at the Cash Desk indicates the start of a new sale. Some
components connected with the channel cashDeskChannel implement a finite
state machine, like CashDeskApplication or PrinterController in order to react
appropriately on further incoming events.

In the next phase of the selling process the desired products are identified
using the Bar Code Scanner which submitts the data to the corresponding con-
troller ScannerController which in turn publishes the event ProductBarCodeS-
cannedEvent. The component CashDeskApplication gets the product description
from the Inventory and calculates the running total and announces it on the
channel.

After finishing the scanning process, the Cashier presses the button Sale
Finished at the Cash Box. Now the Cashier can choose the payment method
based on the decision of the costumer by pressing the button Cash Payment or
Card Payment at his Cash Desk. Figure 16 and 17 illustrate the sequences for
each payment method which shall not described in detail here.

Behavioral View on UC 2 - Manage Express Checkout The basic idea
behind the process of managing express checkouts is to hold a statistic about
sales using the component Coordinator. If the condition for an express checkout
is fulfilled, the Coordinator releases the event ExpressModeEnabledEvent and
due to this a Cash Desk will change into express mode. The Cashier is allowed
to decide to switch back into normal mode by simply pressing the button Disable
Express Mode at his Cash Desk. This causes the event ExpressModeDisabledEvent
which forces the devices to switch back into normal mode. The sequence diagram
in figure 18 shows the described process in more detail.

Behavioral View on UC 3 - Order Products This use case deals with
ordering products from a supplier if they are running out of stock at a store. To
initiate an order, the Store Manager can select the products which have to be
ordered in the desired amount and then presses the button Order at the Store-
GUI. As result of this use case the Store Manager gets a set of order identifiers.
Not only one identifier is returned, because one order can be split and placed at
different suppliers. These identifiers are used by the Stock Manager in use case
4 while receiving and accounting the products. Figure 19 shows the sequence
diagram of this process with more details.

Behavioral View on UC 4 - Receive Ordered Products If the Stock
Manager has ordered products, they will arrive at the Store. To roll in the prod-
uct items the StockManager enters the order identifier assigned during ordering
and presses the button Roll in received order. This results in system actions like
setting the order’s delivery date and rising the amount of the stored products as
it can be tracked in the sequence diagram in figure 20.

Behavioral View on UC 5 - Show Stock Reports If the Store Manager
wants to see if products are running out of stock in his store, he can get the

:C
a
s
h
B
o
x :T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
C
a
s
h
B
o
x
C
o
n
tr
o
lle
r

:T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
C
a
s
h
D
e
s
k
G
U
I

:T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
C
a
s
h
D
e
s
k
A
p
p
lic
a
ti
o
n

:T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
P
ri
n
te
rC
o
n
tr
o
lle
r

:T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
a
s
h
D
e
s
k
::
S
c
a
n
n
e
rC
o
n
tr
o
lle
r

:B
a
rC
o
d
e
S
c
a
n
n
e
r

:T
ra
d
in
g
S
y
s
te
m
::
In
v
e
n
to
ry

:T
ra
d
in
g
S
y
s
te
m
::
C
a
s
h
D
e
s
k
L
in
e
::
C
o
o
rd
in
a
to
r

s
e
n
d
P
a
y
m
e
n
tM
o
d
e
E
v
e
n
t(
C
A
S

H
)

C
a
s
h
A
m
o
u
n
tE
n
te
re
d
E
v
e
n
t(
d
o
u

b
le
 a
m
o
u
n
t,
 b
o
o
le
a
n
 f
in
a
lI
n
p
u
t)

C
a
s
h
A
m
o
u
n
tE
n
te
re
d
E
v
e
n
t(
d
o
u
b
le
 a
m
o
u
n
t ,
 b
o
o
le
a
n
 f
in
a
lI
n
p
u
t)

C
a
s
h
A
m
o
u
n
tE
n
te
re
d
E
v
e
n
t(
d
o
u
b
le
 a
m
o
u
n
t,
 b
o
o
le
a
n
 f
in
a
lI
n
p
u
t)

s
e
n
d
C
a
s
h
A
m
o
u
n
tE
n
te
re
d
E
v
e
n
t

(…
)

[u
n
ti
l
E
N
T
E
R
-b
u
tt
e
n
 p
re
s
s
e
d
]

lo
o
p

S
a
l e
S
u
c
c
e
s
s
E
v
e
n
t(
)

C
h
a
n
g
e
A
m
o
u
n
tC
a
lc
u
la
te
d
E
v

e
n
t(
d
o
u
b
le
 c
h
a
n
g
e
A
m
o
u
n
t)

C
h
a
n
g
e
A
m
o
u
n
tC
a
lc
u
la
te
d
E
v
e

n
t(
d
o
u
b
le
 c
h
a
n
g
e
A
m
o
u
n
t)

o
p
e
n
C
a
s
h
B
o
x
()

C
a
s
h
B
o
x
C
lo
s
e
d
E
v
e
n
t(
)

A
c
c
o
u
n
tS
a
le
E
v
e
n
t(
S
a
le
T
O
)

S
a
le
R
e
g
is
te
re
d
E
v
e
n
t(
S
tr
in
g
 t
o
p
ic
N
a
m
e
,
P
ro
d
u
c
tW
it
h
S
to
c
k
it
e
m
T
O
[]
 p
,
P
a
y
m
e
n
tM
o
d
e
.C
A
S
H
)

:C
a
s
h
ie
r

P
a
y
m
e
n
tM
o
d
e
E
v
e
n
t(
P
a
y
m
e
n
t

M
o
d
e
.C
A
S
H
)

P
re
s
s
 d
ig
it
 b
u
tt
o
n

c
a
lc
u
la
te
 c
h
a
n
g
e
 a
m
o
u
n
t

C
a
s
h
ie
r
re
c
e
iv
e
s

c
h
a
n
g
e
 a
m
o
u
n
t

C
lo
s
e
 C
a
s
h
B
o
x

s
e
n
d
C
a
s
h
B
o
x
C
lo
s
e
d
E
v
e
n
t(
…

)
C
a
s
h
B
o
x
C
lo
s
e
d
E
v
e
n
t(
)

S
a
le
S
u
c
c
e
s
s
E
v
e
n
t(
)

s
d

U
C
 1
:
P
ro
c
e
s
s
S
a
le
::
C
a
s
h
P
a
y
m
e
n
t

F
ig

.
1
6
.
S
eq

u
en

ce
d
ia

g
ra

m
o
f
th

e
p
ro

ce
ss

o
f
ca

sh
p
ay

m
en

t
(U

C
1
).

:TradingSystem
::C

ashD
eskLine::C

ashD
esk::C

ashD
eskA

pplication

:TradingSystem
::C

ashD
eskLine::C

ashD
esk::C

ardR
eaderC

ontroller

Bank
:C

ashBox:TradingSystem
::C

ashD
eskLine::C

ashD
esk::C

ashBoxC
ontroller

:TradingSystem
::C

ashD
eskLine::C

ashD
esk::C

ashD
eskG

U
I

:TradingSystem
::C

ashD
eskLine::C

ashD
esk::PrinterC

ontroller

:TradingSystem
::C

ashD
eskLine::C

ashD
esk::ScannerC

ontroller

:C
ardR

eader

:TradingSystem
::Inventory

:TradingSystem
::C

ashD
eskLine::C

oordinator

sendPaym
entM

odeEvent(…
)

Paym
entM

odeEvent(Paym
ent

M
ode.C

A
R

D
)

PIN
EnteredEvent(int pin)

validateC
ard(creditInfo, pin)

[until transactionId!=null and info==D
ebit.O

K]

loop

debitC
ard(transactionid)

InvalidC
reditC

ardEvent()

:C
ashier

P
ull card throug h C

ard R
eader

sen dC
red itC

ard S
cann edE

ve nt(…
)

C
reditC

ardS cannedEvent(String cr editInfo)

C
ustom

er

E
nter PIN

sendP
IN

E
nteredE

vent(…
)

Transactionid:String

[else]

[transactionid==null]

alt

[else]

[info==D
ebit.TR

AN
SAC

TIO
N

_ID
_N

O
T_VALID

 or info==D
ebit.N

O
T_EN

O
U

G
H

_M
O

N
EY]

alt

info:D
ebit

InvalidC
reditC

ardEvent()

Sale Success Event()

A
ccountSaleEvent(S

aleTO
)

SaleR
egisteredEvent(S

tring topicN
am

e, ProductW
ithStockitem

TO
[] p, Paym

entM
ode.C

ASH
)

sd
U

C
 1: ProcessSale::C

ardPaym
ent

SaleS ucces sEven t()

F
ig

.
1
7
.
S
eq

u
en

ce
d
ia

g
ra

m
o
f
th

e
p
ro

cess
o
f
ca

rd
p
ay

m
en

t
(U

C
1
).

:T
ra

di
ng

S
ys

te
m

::C
as

hD
es

kL
in

e:
:C

as
kD

es
k:

:C
as

hD
es

kA
pp

lic
at

io
n

:T
ra

di
ng

S
ys

te
m

::C
as

hD
es

kL
in

e:
:C

as
hD

es
k:

:C
as

hD
es

kG
U

I

:T
ra

di
ng

Sy
st

em
::C

as
hD

es
kL

in
e:

:C
oo

rd
in

at
or

:T
ra

di
ng

S
ys

te
m

::C
as

hD
es

kL
in

e:
:C

as
hD

es
k:

:L
ig

ht
D

is
pl

ay
C

on
tro

lle
r

:T
ra

di
ng

S
ys

te
m

::C
as

hD
es

kL
in

e:
:C

as
hD

es
k:

:C
ar

dR
ea

de
rC

on
tro

lle
r

Sa
le

R
eg

is
te

re
dE

ve
nt

()

up
da

te
S

ta
tis

tic
s(

)

Ex
pr

es
sM

od
eE

na
bl

ed
Ev

en
t()

Ex
pr

es
sM

od
eE

na
bl

ed
Ev

en
t()

E x
pr

es
sM

od
eE

na
bl

ed
Ev

en
t()

Ex
pr

es
sM

od
eE

na
bl

ed
Ev

en
t()

[e
xp

re
ss

M
od

eN
ee

de
d=

=t
ru

e]

al
t

:T
ra

di
ng

S
ys

te
m

::C
as

hD
es

kL
in

e:
:C

as
hD

es
k:

:C
as

hB
ox

C
on

tro
lle

r

S
ho

w
 e

xp
re

ss
 m

od
e

D
ea

ct
iv

at
e

ca
rd

 re
ad

er

[C
as

hD
es

k
is

 in
 e

xp
re

ss
 m

od
e]

[C
as

hD
es

k
is

 in
 n

or
m

al
 m

od
e]

al
t:C

as
hi

er

:C
as

hB
ox

P
re

ss
 b

ut
to

n
„D

is
ab

le
 E

xp
re

ss

M
od

e“
se

nd
E

xp
re

ss
M

od
eD

is
ab

l
ed

E
ve

nt
(…

)
Ex

pr
es

sM
od

eD
is

ab
le

dE
ve

nt
()

Ex
pr

es
sM

od
eD

is
ab

le
dE

ve
nt

()

E x
pr

es
sM

od
eE

na
b l

ed
Ev

en
t ()

Ex
pr

es
sM

od
eD

is
ab

le
dE

ve
nt

()
A

ct
iv

at
e

ca
rd

 re
ad

er
S

ho
w

 n
or

m
al

 m
od

e

sd

U
C

 2
:M

an
ag

eE
xp

re
ss

C
he

ck
ou

t

F
ig

.
1
8
.
S
eq

u
en

ce
d
ia

g
ra

m
o
f
m

a
n
a
g
in

g
th

e
ex

p
re

ss
ch

ec
k
o
u
t

fu
n
ct

io
n
a
li
ty

(U
C

2
).

:Manager:StoreManager :TradingSystem::Inventory::GUI::Store

Select products and amount to

order

Press button „Order“

:TradingSystem::Inventory::Application::Store

orderProducts(ComplexOrderTO

complexOrder)

:TradingSystem::Inventory::Data::Store

oe:TradingSystem::Inventory::Data::Store::OrderEntry

new()

queryProductById(...)

:TradingSystem::Inventory::Data::Persistence

[foreach ComplexOrderEntryTO coeto in complexOrder.getOrderEntryTO()]

loop

Product p

setProduct(p)

setAmount(coeto.getAmount())

makePersistent(oe)

get supplier and add

order entry to that supplier

po:TradingSystem::Inventory::Data::Store::ProductOrder
new()

setOrderEntries(loe)

queryStoreById(...)

Store store

setStore(store)

setOrderingDate(new Data())

sd UC 3:OrderProducts

:ComplexOrderTO[]

[foreach OrderEntry[] loe in ordersuppl.values()]

loop

Fig. 19. Sequence diagram of ordering products (UC 3).

:StockManager :TradingSystem::Inventory::GUI::Store :TradingSystem::Inventory::Application::Store :TradingSystem::Inventory::Data::Store :TradingSystem::Inventory::Data::Persistence

Enter Order ID (received

during product ordering)

Press button „Roll in received

order“

rollInReceivedOrder(order)

ComplexOrderTO order

= new ComplexOrderTO()

order.setId(orderId)

getTransactionContext()

tx:Transaction

tx.beginTransaction()

tx.commit()

queryOrderById(order.getId())

ProductOrder po

po.setDeliveryDate(new Date())

[forall OrderEntry oe in po.getOrderEntries()]

loop queryStockItem(storeid,

oe.getProduct().getBarCode()

StockItem si

si.setAmount(se.getAmount()

+ oe.getAmount()

sd UC 4:ReceiveOrderedProducts

Fig. 20. Sequence diagram of receiving ordered products (UC 4).

according information using the component GUI::Reporting. The Store Man-
ager therefore simply enters the store identifier and presses the button Create
Report. Then the method getStockReport() is called at the component Appli-
cation::Reporting which itself accesses the data layer component Data::Store in
order to get the required information and to create the report as depicted in
figure 21. The result is a object ReportTO which is then sent to the component
GUI::Reporting and shown to the Store Manager at the GUI.

Behavioral View on UC 6 - Show Delivery Reports This use case is very
similar to use case 5 but in this case the Enterprise Manager wants to know
the mean time to the delivery of certain products. The Enterprise Manager
therefore enters an enterprise identifier and presses the button Create Report.
As depicted in figure 22 this report is created using the data layer component
Data::Enterprise to get the required information.

Behavioral View on UC 7 - Change Price The Store Manager is able to
change the sales price using the Store GUI at the Enterprise Client. Therefor
the Store Manager simply selects the desired product and changes the price in
the shown table. After pressing Enter, the new price will persistently be written
into the database as described in figure 23.

:Manager:StoreManager :TradingSystem::Inventory::GUI::Reporting :TradingSystem::Inventory::Application::Reporting :TradingSystem::Inventory::Data::Store :TradingSystem::Inventory::Data::Persistence

Press button „Create Report“

getStockReport(store)

Enter storeId

ReportTO result

StoreTO store = new StoreTO()

store.setId(storeId)

getTransaction()

tx:Transaction

tx.beginTransaction()

queryStoreById(store.getId())

Store store

[foreach StockItem si in stockitems]

loop

queryAllStockItems(store.getId()

StockItem[] stockitems

append si.getId(), si.getProduct().getName(),

si.getAmount(), si.getMinStock() and

si.getMaxStock() to reportText

ReportTO result = new ReportTO()

result.setReportText(reportText)

sd UC 5:ShowStockReports

tx.commit()

Fig. 21. Sequence diagram of getting stock reports (UC 5).

:Manager:EnterpriseManager :TradingSystem::Inventory::GUI::Reporting :TradingSystem::Inventory::Application::Reporting :TradingSystem::Inventory::Data::Enterprise :TradingSystem::Inventory::Data::Persistence

Press button „Create Report“

Enter enterpriseId

getMeanTimeToDeliveryReport(ep)

ReportTO result

EnterpriseTO ep = new EnterpriseTO()

ep.setId(epId)

getTransaction()

tx:Transaction

tx.beginTransaction()

ReportTO result = new ReportTO()

queryEnterpriseById(ep).getId()

TradingEnterprise enterprise

tx.commit()

[foreach ProductSupplier supplier in enterprise.getSuppliers()]

loop

getMeanTimeToDelivery(supplier, enterprise)

long mtdelivery

append supplier.getId, supplier.getName()

and mtdelivery to reportText

result.setReportText(reportText)

sd UC 6:ShowDeliveryReports

Fig. 22. Sequence diagram of getting delivery reports (UC 6).

:Manager:StoreManager :TradingSystem::Inventory::GUI::Store :TradingSystem::Inventory::Application::Store :TradingSystem::Inventory::Data::Store :TradingSystem::Inventory::Data::Persistence

Select product and enter new

price

changePrice(stockItemTO)

result:ProductWithStockItemTO

read selected product

into stockItemTO:StockItemTO

queryStockItemById(stockItemTO.getId())

si:StockItem

si.setSalesPrice(

stockItemTO.getSalesPrice())

result=fillProductWithStockItemTO(si)

getTransaction()

tx:Transaction

tx.beginTrans
action()

tx.commit()

sd UC 7:ChangePrice

Fig. 23. Sequence diagram of changing the sales price of a product (UC 7).

Behavioral View on UC 8 - Product Exchange among Stores

The main aspect of use case 8 is a more complex interaction of distributed
components and servers. If the stock of a certain product or a number of products
of a Store runs low, the application Inventory of the Store Server can start a
request for that product. The component ProductDispatcher of the application
running on the Enterprise Server initiates a cache flush of all Store Servers
to update the central database at the Enterprise Server with the latest stock
data of all Stores. The component ProductDispatcher is also responsible for
calculating an optimal solution for transporting the required products from a
number of Stores to the requesting Store. To determine the optimal solution
only the stocks of Stores are searched which are chosen by a heuristic for effort
and costs. If a cost-effective solution is found, the transportation of the required
goods is initiated and the requesting Store is informed about the results of its
query. The sequence diagram in Figure 24 gives an overview on the dynamics in
use case 8.

1.5 Implementation

In this section some important implementation aspects are briefly introduced.
This includes the code design and structure as well as some hints for how to
start the prototype of the Trading System.

Design

The code follows a specific structure in order to identify software components
easily. A component is mapped to a Java package. The interfaces a component

SD: UC8

alt
shouldDeliver
==true

loop
for each store

loop
for each store in region

:TradingSystem
::Inventory::Application

:TradingSystem
::Inventory::Data

:inventory::application::
productdispatcher::
ProductDispatcher

StoreServer A EnterpriseServer

queryLowStockItems

returnLowStockItems

orderProductsAvailableAtOtherStores(storeID, products[])

:TradingSystem
::Inventory::Data

:TradingSystem
::Inventory::Application

n other
distributed
StoreServers

triggerDatabaseWrite
triggerDatabaseWrite

returnRequiredProductsAvailable
= ComplexOrderEntry[]

searchForStoresInTheRegion
(Heuristics for effort and costs...)

boolean:getShouldDeliver()

markProductsForDelivery(ProductMovementTO) ---> (product / amount)

Are connected
via RMI

Are connected
via RMI

TimeoutIfStoreUnavailable

shouldDeliver
==false

returnRequiredProductsAvailable = ComplexOrderEntry[] (quantity=0)

getStoreProductCombinations() = (Store, ComplexOrderEntry[])[]

markProductsIncoming(ComplexOrderEntry[])

markProductsUnavailableInStock

ref Sub-UC X: Trigger Database Write

Fig. 24. Sequence diagram of exchanging products among stores (UC 8).

Fig. 25. Excerpt of classes and packages to depict the code structure.

supports is located in that package. The implementation classes of the interfaces
are located in a subpackage called impl. In that way the diagrams presented in
this chapter can be mapped to their corresponding code in the implementation
of the Trading System.

How to start the Trading System?

The prototype can be started using Ant ([7]). The required targets are located in
a file named build.xml. Furthermore a configuration file tradingsystem.properties
exists where, for example, the number of Stores or Clients can be maintained.
Further and detailed information can be found in the file readme.txt and in the
code comments.

1.6 System Tests

In this section an overview of the system testing framework for the Trading
System is given. The system tests are intended to be used in two ways: First
to further detail certain aspects of the system and second to allow the different
modeling teams to test their resulting implementation with a common set of
(preferably automated) tests.

Test Architecture and Organisation

For a precise specification of the test scenarios and an easy way for automation of
test execution it was decided to write the test cases using the Java programming
language and the JUnit ([8]) testing framework as far as possible. Even when
specifying the test scenarios in Java these were specified using self-explanatory
identifiers and method names thus the test scenarios are also easily human read-
ably and understandable.

Not for all of the before described use cases it was considered useful to specify
a precise test scenario. Where the test conditions are not described detailed
enough to judge the outcome of a test programmatically, an informal textual
test script is provided instead.

The provided testing framework consists of different layers as shown in figure
26. The system tests use a common testing interface. This interface is imple-
mented by test drivers for each implementation. The test drivers map the calls
from the tests to the respective implementation.

To enable reusing the tests for several implementations of the same system,
the test scenarios are implemented only against a set of interfaces describing the
interactions of the Trading System with its environment. For example there is
an Interface for the Bar Code Scanner defining a scanBarcode method, which
is used for simulating the scanning of a product’s bar code, while the interface
for the user display provides a isPriceShown method which is used to check if
the correct price is actually presented to the customer.

S
ys

te
m

 T
es

ts

fo
r

T
ra

di
ng

 S
ys

te
m

P
ro

ce
ss

S
al

eC
as

h

P
ro

ce
ss

S
al

eC
on

cu
rr

en
t

P
ro

ce
ss

S
al

eC
re

di
tC

ar
d

P
ro

ce
ss

S
al

eI
nv

al
id

Ite
m

Id

P
ro

ce
ss

S
al

eC
re

di
tC

ar
dF

ai
le

d

M
an

ag
eE

xp
re

ss
C

he
ck

ou
t

O
rd

er
A

nd
R

ec
ei

ve
P

ro
du

ct
s

P
ro

du
ct

E
xc

ha
ng

eA
m

on
gS

to
re

s

T
es

t
In

te
rf

ac
e

of
 T

ra
di

ng
 S

ys
te

m

B
an

k

B
ar

co
de

S
ca

nn
er

C
ar

dR
ea

de
r

C
as

hB
ox

E
nt

er
pr

is
e

Li
gh

ts
D

is
pl

ay

O
rd

er

P
rin

te
r

P
ro

du
ct

S
to

re
P

C

U
se

rD
is

pl
ay

T
es

tD
riv

er

T
es

t
D

ri
ve

r
fo

r
Im

pl
em

en
ta

tio
n

1

T
es

t
D

ri
ve

r
fo

r
Im

pl
em

en
ta

tio
n

2

T
es

t
D

ri
ve

r
fo

r
Im

pl
em

en
ta

tio
n

n

...

T
es

t
D

ri
ve

r
fo

r
R

ef
er

en
ce

Im
pl

em
en

ta
tio

n

Im
p

le
m

en
ta

ti
o

n
 1

of
 T

ra
di

ng
 S

ys
te

m

...

R
ef

er
en

ce

Im
p

le
m

en
ta

ti
o

n
of

 T
ra

di
ng

 S
ys

te
m

Im
p

le
m

en
ta

ti
o

n
 2

of
 T

ra
di

ng
 S

ys
te

m

Im
p

le
m

en
ta

ti
o

n
 n

of
 T

ra
di

ng
 S

ys
te

m

us
es

im
pl

em
en

ts

im
pl

em
en

ts

im
pl

em
en

ts

im
pl

em
en

ts

m
ap

s
ca

lls
 to

m
ap

s
ca

lls
 to

m
ap

s
ca

lls
 to

m
ap

s
ca

lls
 to

Fig. 26. Architecture of the system testing framework

The link to the system’s implementation is built by an implementation-
specific test driver implementing these interfaces and mapping all interface calls
to corresponding system actions. This configuration allows the tests to work
with unknown realizations of the system, as the knowledge about the actual im-
plementation (which messages to send and how to identify the current state) is
encapsulated in the test driver, which in turn needs to be adapted to the used
implementation. Thus if the resulting implementation of a participating team
should be tested, only an appropriate test driver is required, i.e., a suitable
implementation of the test interfaces. The specified test scenarios will remain
unchanged and may potentially be executed against any trading system imple-
mentation.

As a proof-of-concept a test driver for the reference implementation of the
trading system is provided. Further details on the testing system and how to
write a specific test driver may be found in the corresponding source code and
the JavaDoc documentation which comes with the source code.

Test Scenarios

The single test scenarios are based on the description of the use cases of the
trading system. It was not intended to fulfill any coverage criteria or completeness
in testing but rather to give examples of how such tests could look like and to
provide a formalization of the use cases.

Basically there are two kinds of test scenarios: Formally described test cases
written as executable Java test classes and informal descriptions of tests. The
choice of the representation of a test case depends on the kind of use case.

The use cases consisting of a sequence of executions steps with a defined result
are given as Java test classes using the test interfaces. These test cases could
be executed automatically (by means of JUnit) for a specific implementation.
However, the source code of these tests can also be interpreted as a formalized
test plan which could be followed manually.

The remaining use cases which were not explicit enough but mainly set up a
requirement for an entire piece of functionality (such as use case 5) were treated
by describing the test case informally. Test cases of this form are intended to
be checked manually. In table 2 the pass and fail conditions for these tests are
specified.

Table 2 describes the single test cases. It states from which use case the test
is derived and labels each test case with an identifier (this refers to the respective
Java class of the test). For the test cases specified in Java a short description of
the scenario is given. For details the reader may consult the source code of the
test scenarios. For the informal stated test cases the pass and fail criteria are
given instead.

Use
Case

Test Case Id Type Description

1 ProcessSaleCash Java Purchase of some goods and cash
payment, no exceptions.

1 ProcessSale
Concurrent

Java Concurrent purchase of some goods
at n different cash desks, no
exceptions.

1 ProcessSale
CreditCard

Java Purchase of some goods and credit
card payment, no exceptions.

1 ProcessSale
InvalidItemId

Java Invalid item id read, manual entry
of item id.
(Exception in step 3 of use case 1)

1 ProcessSale
CreditCardFailed

Java Wrong PIN entry for credit card;
card validation fails.
(Exception in step 5.2 of use case 1)

2 ManageExpress
Checkout

Java System switches to express mode.
Express mode is shown at cash desk,
credit card payment not possible.

3 ShowProducts
ForOrdering

infor-
mal

Store shall provide functionality to
generate a report about products
which are low on stock.
Test: Check if System offers
functionality for reporting products
low on stock.
PASS: Generation of report with
products low on stock possible
FAIL: Generation of report with
products low on stock NOT possible

3, 4 OrderAnd
ReceiveProducts

Java Products low on stock will be
ordered and correct delivery will be
recorded in the inventory.

Use
Case

Test Case Id Type Description

5 ShowStockReports infor-
mal

System shall provide functionality
to present a report including all
available stock items in store or a
report of cumulated available
product items of a specified
enterprise.
Test: Check if System offers
functionality for generation of stock
reports
PASS: Generation of stock reports
possible
FAIL: Generation of stock reports
NOT possible

6 ShowDeliveryRe-
ports

infor-
mal

System shall provide functionality
to present a report showing mean
time to delivery for each supplier of
a specific enterprise.
Test: Check if System offers
functionality for generation of a
delivery report
PASS: Generation of delivery
report possible
FAIL: Generation of delivery report
NOT possible

7 ChangePrice infor-
mal

System shall provide functionality
to change sales price of a product.
Test: Check if System offers
functionality for change sales price
of a product
PASS: Change of sales price for
product item possible
FAIL: Change of sales price for
product item NOT possible

8 ProductExchange
AmongStores

Java After a sale which leads to a
product being low on stock of the
store, product exchange between
stores should take place.

Table 2: Test Scenarios for Trading System

1. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development (3rd Edition). Prentice Hall PTR
(2004)

2. OMG, Object Management Group: UML Profile for Schedulability, Performance
and Time. http://www.omg.org/cgi-bin/doc?formal/2005-01-02 (2005)

3. SUN Microsystems: The Java Database Connectivity (JDBC).
(http://java.sun.com/javase/technologies/database/index.jsp)

4. JBoss (Red Hat Middleware): Hibernate. (http://www.hibernate.org)
5. SUN Microsystems: Java Persistence API. (http://java.sun.com/javaee/technologies/persistence.jsp)
6. SUN Microsystems: Java Message Service. (http://java.sun.com/products/jms/)
7. Apache: The Apache Ant Project. (http://ant.apache.org)
8. JUnit: JUnit. (http://www.junit.org)

