
KLAPER: an Intermediate Language for
Model-Driven Predictive Analysis of
Performance and Reliability

Vincenzo Grassi
Dipartimento di Informatica, Sistemi e Produzione, Università di Roma Tor Vergata

Raffaela Mirandola
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Enrico Randazzo
Dipartimento di Informatica, Sistemi e Produzione, Università di Roma Tor Vergata

Intecs S.p.A., Roma, Italy

Antonino Sabetta
ISTI-CNR, Pisa, Italy

Executable
implementation

automatic
transformation?

Our contribution

Design level model
based on

some Component Model

implementation

Performance/reliability model
(QN, Markov model, …)

automatic
transformation?intermediate model

(KLAPER)

Kernel LAnguage for PErformance and Reliability analysis

QoS-driven component/connectors
selection and composition

Non obvious correlation between the QoS of the
assembled architecture and the individual
component/connector QoS

assembly QoS monitoring to assess the fulfillment of some QoS
goal, after the components/connectors selection and goal, after the components/connectors selection and
composition

assembly QoS prediction to drive the selection of
components/connectors

need of QoS prediction methodologies
compositional (to exploit the architecture
structure)
automatic (to make predictive analysis really
effective)

Predictive analysis of component-
based systems

Useful to drive the selection and composition of components
late problem fixing may be too costly

Focus on extra-functional attributesFocus on extra-functional attributes
performance

throughput
completion time

reliability

Predictive analysis must be carried out on models of the system!

Predictive analysis of component-
based systems: main issues

analysis-oriented model building is a complex
activity:

Extraction of relevant Performance/Reliability oriented information from a
design oriented model

which information?which information?
how is it represented?

Construction of performance/reliability/performability analysis-oriented
models

MDD based approach

Model solution (not an issue here)

generating a performance/reliability model: the
“what” & the “how”

intermediate language

what

� What factors affect the extra-functional attribute: description issue

� How they are taken into account: solution issue

separation of concerns

more separation

our focus

C-B application model

+

“context” information

(context = usage profile, competing appls.,

platform (.NET, J2EE, …), OS, Hw, ...

performance

reliability

performability

measures

considering factors such as:

contention,

layered architecture,

...

LQN,

SPA,

StoCharts,

...

“all-in-one” approach (what+how)

how
what

So far…

design-oriented
model

analysis-oriented
model

model transformation methodology

"tower of Babel" problem
specific issue for CB systems
heterogeneous component and composition description
languages

“tower of Babel” problem (1)

languages
acme, etc ...

several target languages
queueing networks, Petri Nets, Markov Processes,
Bayesian models, ...

solution ?

“tower of Babel” problem

N analysis-oriented notations

M design-oriented
notations

MxN transformation methodologies?

Intermediate languages:
KLAPER

...
Petri Nets

...

UML

OWL-S

Petri Nets

Markov Proc.

EQN

KLAPER

Design notations Analysis notations Analysis tools

KLAPER

KLAPER : an intermediate “kernel” language to support
performance and reliability analysis of CB systems based on
model transformations

kernel : compact language (only CB design level information
that is relevant for performance and reliability analysis is that is relevant for performance and reliability analysis is
represented)

transformation methodologies from/to design/analysis models made
simpler, thanks to the reduced “semantic gap”

intermediate : neither a design language nor an analysis
language

from MxN to M+N transfomation methodologies

model transformation : MOF based, to exploit tools
developed within model-driven approaches to software design
(MDA)

transformation rules defined at metamodel level

Shifting-upwards the
focus

MOF

QVT

based on

Design
metamodel

Analysis
metamodel

Design model Analysis model

Transformation
rules

Transformation
engine

from

from

to

to

based on
based on

based on based onbased on

exec

KLAPER is based on this phylosophy

Shifting-upwards the
focus…

KLAPER: the basic concepts

The system modeled as a set of Resources and related
Services

no basic distinction between hw/sw, active/passive, ...

Services are offered by ResourcesServices are offered by Resources

Services can be used by other Services

Services are characterized by an abstraction of their functional
(constructive) behavior

Related concept : analytical interfaces vs. constructive
interfaces for components (see PECT initiative from CMU-SEI)

KLAPER distills analytic interfaces from CB design models
… and models analogously platform “interfaces”

More about “distillation” (1)

� "abstract" representation of an offered

service

� what should be abstracted?

the service behavior is dependent on :

� input parameters used in a service invocation

� behavior of other required services

� abstract representation of :

� input parameters

� flow of requests addressed to other components

(and connectors)

More about “distillation” (2)

� stochastic abstractions to support

stochastic analysis of performance and

reliability

input parameters :

original input domain
abstract input domain

� input parameters :

� flow of requests :

� probabilistic representation of :

� flow of control (modeled by probabilistic branching
and loops)

� actual parameters (modeled by random variables)

The KLAPER metamodel

KlaperModel Resource*

offeredService

Workload

*

Service

*

*

Binding

Behavior

0..1
hashas

0..1

1..*
in

0..*
to

0..1

0..1

nested

behavior

0..1

*

resource

*

Step

1..*

Transition

0..* 0..1

out

0..*
from

0..1

ActivityEndStart

ReleaseAcquire ServiceCall

Control

JoinForkBranch

ActualParam

*

*

*

The KLAPER metamodel

*

Binding

Behavior

0..1
hashas

0..1

1..*
in

0..*
to

0..1

0..1

nested

behavior

0..1

*

KlaperModel Resource*

offeredService

Workload

*

Service

*

Resource

Attributes:

� name

� type

� capacity

resource

*

Step

1..*

Transition

0..* 0..1

out

0..*
from

0..1

ActivityEndStart

ReleaseAcquire ServiceCall

Control

JoinForkBranch

ActualParam

*

*

behavior*

� schedPolicy

� description

Associations

� offeredService

The KLAPER metamodel

*

Binding

Behavior

0..1
hashas

0..1

1..*
in

0..*
to

0..1

0..1

nested

behavior

0..1

*

KlaperModel Resource*

offeredService

Workload

*

Service

*
Service

Attributes:

� name

� formalParams

speedAttr

resource

*

Step

1..*

Transition

0..1

out

0..*
from

0..1

ActivityEndStart

ReleaseAcquire ServiceCall

Control

JoinForkBranch

ActualParam

*

*

� speedAttr

� failAttr

� description

Associations

� behavior

� resource

� binding

The KLAPER metamodel

*

Binding

Behavior

0..1
hashas

0..1

in to

0..1

nested

behavior

0..1

*

KlaperModel Resource*

offeredService

Workload

*

Service

*

Behavior

Associations

� step

� transition

service

resource

*

Step

1..*

Transition

in

0..*
to

0..1

out

0..*
from

0..1

ActivityEndStart

ReleaseAcquire ServiceCall

Control

JoinForkBranch

ActualParam

*

*

behavior* � service

� workload

The KLAPER metamodel

*

Binding

Behavior

0..1
hashas

0..1

1..*
in

0..*
to

0..1

0..1

nested

behavior

0..1

*

KlaperModel Resource*

offeredService

Workload

*

Service

*

Workload

Attributes:

� workloadType

� arrivalProcess

population

resource

*

Step

1..*

Transition

0..* 0..1

out

0..*
from

0..1

ActivityEndStart

ReleaseAcquire ServiceCall

Control

JoinForkBranch

ActualParam

*

*

*
� population

Associations

� behavior

The KLAPER metamodel

*

Binding

Behavior

0..1
hashas

0..1

1..*
in

0..*
to

0..1

0..1

nested

behavior

0..1

*

KlaperModel Resource*

offeredService

Workload

*

Service

*

Step

Attributes:

� name

� repetition

internalExecTime

resource

*

Step

1..*

Transition

0..* 0..1

out

0..*
from

0..1

ActivityEndStart

ReleaseAcquire ServiceCall

Control

JoinForkBranch

ActualParam

*

*

behavior* � internalExecTime

� internalFailProb

� completionModel

Associations

� transition

The KLAPER metamodel

*

Binding

Behavior

0..1
hashas

0..1

1..*
in

0..*
to

0..1

0..1

nested

behavior

0..1

*

KlaperModel Resource*

offeredService

Workload

*

Service

*

ServiceCall

Attributes:

� resourceType

� serviceName

� isSync

Associations

resource

*

Step

1..*

Transition

0..* 0..1

out

0..*
from

0..1

ActivityEndStart

ReleaseAcquire ServiceCall

Control

JoinForkBranch

ActualParam

*

*

behavior* Associations

� activity

� actualParam

� binding

ActualParameter

Attributes:

� value

The KLAPER metamodel

*

Behavior

0..1
hashas

0..1

1..*
in

0..*
to

0..1

0..1

nested

behavior

0..1

*

KlaperModel Resource*

offeredService

Workload

*

Service

*

resource

Binding

*

Step

1..*

Transition

0..* 0..1

out

0..*
from

0..1

ActivityEndStart

ReleaseAcquire

Control

JoinForkBranch

ActualParam

*

*

*

Binding

Associations:

� ServiceCall

� ServiceServiceCall

KLAPER-based model generation

Shifting again…

Modelling CoCoME

� What do we model?

� UC1 – Process Sale
� Bar Payment only (Card Payment not modeled)� Bar Payment only (Card Payment not modeled)

� Main flow only (not secondary or exception flows)

� UC3 – Order Products
� Completely modeled

From design models to KLAPER

models

� A case study: from UML to KLAPER.

� examples of MDA-based transformations from a

particular design model notation to KLAPER.

UML

OWL -S

...
Petri Nets

Ma rkov P roc.

...

EQN

KL APER

Design notations Analysis notations Analysis tools

Transformation rules from UML to

KLAPER

� Each UML use case is mapped onto a KLAPER

workload whose steps are taken from the

corresponding sequence diagrams.

Transformation rules from UML to

KLAPER

� KLAPER Resources are built from the UML

deployment diagram.

Transformation rules from UML to

KLAPER

� Network connections of the UML deployment

diagram are mapped onto KLAPER resources

offering “connection services”.

Transformation rules from UML to

KLAPER

� These are only some examples of the

transformation rules from UML to KLAPER.

� There are many other transformation rules!

(but it would take too much time to see all of

them)

A KLAPER Workload modelling the

UC1 main operation

A KLAPER Workload modelling the

UC1 main operation

A KLAPER Workload modelling the UC3
main operation

A KLAPER Workload modelling the UC3
main operation

KLAPER model of the UC3 Store
getProducts operation (pre-deployment)

KLAPER model of the UC3 Store
getProducts operation (post-deployment)

KLAPER model of the JDBC

Resource

KLAPER model of the JDBC

Resource

From KLAPER models to

analysis models

� A case study: from KLAPER to LQN.

� examples of MDA-based transformations from

KLAPER to a particular analysis notation.

UML

OWL -S

...
Petri Nets

Ma rkov P roc.

...

EQN

KL APER

Design notations Analysis notations Analysis tools

The LQN MOF Meta-Model

� Extracted directly from the XMLSchema used by the Carleton
University lqns simulator

� (see the files “lqn.xsd” and “lqn-core.xsd”)

Transformation rules from KLAPER

to LQN

� Each KLAPER workload is mapped onto an LQN

Task with an Entry where the workload type is

specified.

Transformation rules from KLAPER

to LQN

� Each KLAPER Resource is mapped onto an LQN

Task…

Transformation rules from KLAPER

to LQN

� …and each KLAPER Resource that models an

hardware device originates an LQN Processor.

Transformation rules from KLAPER

to LQN

� Each KLAPER Service becomes an Entry of a LQN

Task.

Transformation rules from KLAPER

to LQN

� Each KLAPER ServiceCall is mapped onto an

Activity (making a “call”) of an LQN Entry.

Call to a service

Transformation rules from KLAPER

to LQN

� Each KLAPER Activity is mapped into an LQN

Activity.

Transformation rules from KLAPER

to LQN

� Each KLAPER condition (or, and, loop) is directly

mapped onto the corresponding LQN condition.

The LQN model for the CoCoME

UC1 use case

The LQN model for the CoCoME

UC1 use case

The LQN model for the CoCoME

UC3 use case

The LQN model for the CoCoME

UC3 use case

Results of the analysis

� 4 different simulation configurations

� Base configuration:� Base configuration:
� Processors: Pentium III at 500 Mhz (1354

MIPS).

� Networks: bandwidth of 100 Mbps

� Database disk: average rate of 300 MBps

Results of the analysis

other configurations :

� “Cpu 2x” configuration:

Processors: double frequence.� Processors: double frequence.

� “Internet” configuration:

� Network: bandwith of 4 Mbps (was 100 Mbps).

� “Slow disk” configuration:

� Database disk: average rate of 100 MBps (was

300 MBps).

Results of the analysis

� UC1 is characterized by a lot
of human interactions.

� Service times registered at
the main workflow levelthe main workflow level

� A lot of time is spent in
human actions
(scanProductBarcode,
handingOverMoney,
handleAmount)

� The most expensive activity
is scanProductBarcode,
which is also repeated many
times.

Results of the analysis

� Very low utilization values :
the arrival rate of customers
to the store is very small
compared to the capacity of
the system.the system.

� Very low utilization of
Network and RS232.

� CashDeskLine and
BarcodeScannerCPU are
the most used processors
(the last one is where the
scanProductBarCode
service runs, see previous
slide).

Results of the analysis

� UC3 is characterized by a
smaller human interaction than
UC1

� Cpu 2x: EnterpriseServerCPU
and StoreServerCPU have a and StoreServerCPU have a
lower utilization due to the
increased cpu frequency.

� Internet: less bandwith means
higher time for transmission and
therefore an increse of the
utilization.

� Slow disk: all unchanged except
for the disk utilization, which is
increased due to the reduced
transfer rate.

Results of the analysis

� Cpu 2x: a more powerful cpu
means best performance in all
the tasks (except for the disk
one).

� Internet: all tasks need more
time to execute except for RMI
that receives less service
time to execute except for RMI
that receives less service
requests for second (because
we spent more time on the other
tasks).

� Slow disk: network tasks are
unchanged but all the other
tasks have an higher utilization
due to the fact that the disk in
UC3 is used in every action.

� Throughput is the same for all
the cases because the system
load is very low.

Results of the analysis

� Cpu 2x: more powerful cpu's
mean less execution time.

� Internet: more time for
transmission means higher
service times (see the service times (see the
ManagerWorkload Entry).

� Slow disk: a lower rate
means more time for each
read.

� All as expected!

Results of the analysis

� Green line: simulated value.

� Red line: requisite bound.

� T31-1: time until showing the
lists of all products and
missing products.

� T34-1: time for queryng the
inventory data store

Results of the analysis

� Fuchsia line: simulated
value.

� Red line: requisite bound.

� t34-2: time for creating a
new order entry

� T34-3: time for creating a ne
product order

Results of the analysis

� 1 Store vs 200

Stores

� Simulated

measures:

� Utilization

� Global Service Time

� Entry Wait Time

� Throughput

Results of the analysis

� 1 Store vs 200

Stores

� Simulated mesures:

� getProducts service

time

� orderProducts

service time

The KLAPER environment

Source modelling
Tools (UML)

LQN Model
Solver

Performance
results

UML model
(XMI)

KLAPER
Model generator

KLAPER
Editor (plug-in)

Performance model
Generetor (LQN)

KLAPER model
(XMI)

LQN
Editor (plug-in)

LQN Model
(XMI)

Result Converter

The KLAPER environment

� KLAPER tools

developed on the EMF

(Eclipse) platform:

� KLAPER metamodel
plugin

� KLAPER editor plugin

� LQN metamodel plugin

� LQN editor plugin

� KLAPER to LQN
transformation plugin
(work in progress)

Conclusions…

Need of automatic tools for the transformation from design models of

component-based application to analysis models

A transformation framework centered around a kernel language

called KLAPERcalled KLAPER

Captures the relevant information for the analysis of non-functional

characteristics of component-based systems.

Facilitates (hopefully …) the transformation definition.

CoCoME: KLAPER has been used to derive a Layered Queueing Network,

starting from the UML model annotated according to the SPT profile.

Definition of a (partially) automated environment

…Future works

The long-term goal of our research is:

to enhance the implementation of this framework,
(e.g., automatic model transformations using QVT-based languages)(e.g., automatic model transformations using QVT-based languages)

to provide system designers with a richer toolkit that allows to generate
automatically different performance and reliability models starting from
design models.

For additional information see: http://klaper.sf.net

