
CoCoME in Fractal

DISTRIBUTED SYSTEMS RESEARCH GROUP
FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY, CZECH REPUBLIC

http://dsrg.mff.cuni.cz

FRANCE TELECOM R&D
ISSY LES MOULINEAUX, FRANCE

http://fractal.objectweb.org

Lubomír Bulej, Tomáš Bureš, Martin Děcký, Pavel Ježek, Pavel Parízek,
František Plášil, Tomáš Poch, Nicolas Rivierre, Ondřej Šerý, Petr Tůma

Fractal Team Members

• Charles University DSRG
� Software components

• Architecture and component models (SOFA)
• Formal specification of behavior

� Performance evaluation

CoCoME seminar, Dagstuhl 07

� Performance evaluation
• Regression benchmarking
• Performance modeling

• France Telecom R&D
� Software components

• Architecture and component models (Fractal)

Fractal Component Model

• Project hosted by OW2 consortium
• Lead development by INRIA, France Telecom R&D

• Complex applications ranging from embedded software
to application servers and information systems

• Hierarchically composed components

CoCoME seminar, Dagstuhl 07

• Hierarchically composed components
• Shared components for resources
• Separation of concerns

� Controller infrastructure
� Runtime introspection

• Dynamic configuration and reconfiguration
• Behavior specification via Behavior Protocols

� Composition correctness
� Implementation compliance

Static Architecture in Fractal

• Abstract specification (Fractal) with
concrete implementation (Julia)

• Software components
� Primitive components as basic blocks
� Explicit required and provided interfaces
� Composite components with bindings and content

External component view

provided

interface
required

interface

Required InterfaceInternal component view

export

binding
import

binding

CoCoME seminar, Dagstuhl 07

� Composite components with bindings and content

• Membrane with controllers
� Orthogonal to application logic
� Lifecycle, binding, content …
� Assembled at runtime

• Application is a single top-level component

e
x

te
rn

a
l

in
te

rf
a

c
e

in
te

rn
a

l
in

te
rf

a
c

e

binding

internal

binding

membrane with controllers

• Process algebra expression describing permitted behavior
� Infinite set of finite event traces
� Events are invocations on interfaces

• Fragment from CoCoME sale logic

Behavior Protocols in Fractal

SALE_STARTED

CashDeskConnector

BankIf

CashDeskApplicationHandler
CashDeskApplicationDispatcher

CDLEventDispatcher CDLHandler

CoCoME seminar, Dagstuhl 07

SALE_STARTED

(?CashDeskApplicationHandler.onProductBarcodeScanned

{

!CashDeskConnector.getProductWithStockItem ;

!CashDeskApplicationDispatcher.sendBarcodeNotValid +

!CashDeskApplicationDispatcher.sendRunningTotalChanged

}

) * ;

?CashDeskApplicationHandler.onSaleFinished;

SALE_FINISHED

Behavior Protocols Syntax

• Events
� Emitting a method call request: !interface.method↑

� Accepting a method call request: ?interface.method↑

� Emitting a method call response: !interface.method↓

� Accepting a method call response: ?interface.method↓

• Operators
� Sequence ;
� Alternative +
� Repetition *
� And-parallel interleaving |

CoCoME seminar, Dagstuhl 07

� And-parallel interleaving |
� Or-parallel interleaving | |

� Consent ∇∇∇∇

parallel composition (interleaving + internal events τ)
can indicate communication errors

no activity (deadlock)
bad activity (emitted call cannot be accepted)

• Syntactic sugar for method internals
� ?i.m = ?i.m↑ ; !i.m↓

� ?i.m {prot} = ?i.m↑ ; prot ; !i.m↓

Behavior Compliance Checking

• Horizontal compliance
� Do the components at the same

level cooperate correctly ?
� CashDeskFP ∇∇∇∇ CashDeskLineBusFP ∇∇∇∇

CoordinatorFP = ArchitectureProt

• Vertical compliance
� Does the composite component

do what its interface claims ?

CashDeskLine

CashDeskLineBus

CashDesk
*

BankIf

CoCoME seminar, Dagstuhl 07

do what its interface claims ?
� ArchitectureProt ∇∇∇∇

CashDeskLineFP
-1

� Both checked by
Behavior Protocol Checker (BPC)

• Implementation compliance
� Does the implementation

do what its interface claims ?
� Checked by a combination of

Java Path Finder (JPF) and
Behavior Protocol Checker (BPC)

CashDeskLineBus

Coordinator

BankIf

CashDeskConnectorIf

Implementation Compliance with JPF and BPC

• JPF traverses the state space of
the component implementation
� Notification about method calls sent to BPC
� Notification about backtracking sent to BPC

• BPC follows JPF
� JPF method calls are BPC protocol state transitions

CoCoME seminar, Dagstuhl 07

� JPF method calls are BPC protocol state transitions
� JPF backtracking causes BPC backtracking as well

• Missing environment problem
� JPF only checks a complete program
� We generate an artificial environment

• All possible calls as prescribed by the protocol
• Composition of component + environment checked

Communication Between JPF and BPC

JPF state space

Java code of
component + environment

BPC state space

protocol of component

CoCoME seminar, Dagstuhl 07

. JPF
listener

BPC

1. invoke
ifc.m 2. invoke

instruction
3. notify (!ifc.m↑)

4. !ifc.m↑

5. ok

6. ifc.m
returns

7. return
instruction

8. notify (?ifc.m↓)
9. ?ifc.m↓

10. ok

Modeling CoCoME in Fractal

• Created
� Architecture captured in Fractal ADL
� Behavior described in Behavior Protocols
� Reference implementation converted

using the Julia implementation of Fractal

CoCoME seminar, Dagstuhl 07

• Benefits
� Compliance of component behavior

specification checked
� Correspondence between component

code and its behavior specification checked
� Extra functional properties monitored transparently

Static Architecture View in Fractal ADL

• Mostly straightforward modeling

• Original architecture modified to
� Correspond to Fractal abstractions

• Buses replaced by components

CoCoME seminar, Dagstuhl 07

• Buses replaced by components

� Improve inventory structure
• Restructured to remove redundant layer

� Support UC-8
• Explicit component for Enterprise Server

Fractal Architecture

Buses replaced by componentsInventory restructuredEnterpriseServer added

CoCoME seminar, Dagstuhl 07

Approaches to Crafting Behavior Protocols

• BP integrates information from
� multiple UML Sequence Diagrams, Use Case textual descriptions
� reference implementation
� additional design decisions

• Inventory components, CashDesk hardware
� straightforward functionality, protocol derived from UML diagrams

• CashDeskApplication component

CoCoME seminar, Dagstuhl 07

• CashDeskApplication component
� contains the sale logic that keeps the state of the current sale.
� protocol created in two steps

• state machine derived from reference implementation
• protocol derived from the state machine

• Bus components
� protocol has to capture serialization and multiplexing
� derived from the annotated UML Component Diagram

Checking Compliance of Components

CODE

CoCoME seminar, Dagstuhl 07

Checking of Primitive Components

• CashDeskApplication
� Selected as it has the most complex behavior
� We did not check other primitive components

• JPF requires complete program
� Java environment created in two steps

• Generated from the frame protocol
• Manually modified to include arguments

CoCoME seminar, Dagstuhl 07

• Manually modified to include arguments

• Discovered inconsistency of
reference implementation wrt UC-1
� Implementation trapped in a loop when

the customer pays with invalid credit card
� Discovered in 2 seconds !
� Adjusted behavior checked in 14 seconds

to challenge method feasibility

Checking Compliance of Components

• Component hierarchy
� Splits the checking of the application into feasible subtasks
� Each composite component checked independently

• Compliance of the whole Trading System
was successfully checked

(Times for 2 x Core 2 Duo 2.3GHz, 4GB RAM)

CoCoME seminar, Dagstuhl 07

Runtime Monitoring Overview

• Demonstrates capabilities of the component framework
• We focus on observation of extra-functional properties

� Does the implementation work within the required limits ?
� Do the external services meet the service level agreements ?

• Declarative configuration of monitoring infrastructure

CoCoME seminar, Dagstuhl 07

• Declarative configuration of monitoring infrastructure
� Fractal configuration file describes controllers
� Interceptor code generated transparently at runtime
� Infrastructure accessible via standardized interfaces (JMX)

• Distinguishing features
� Very low overhead
� No modification of the application
� Can observe any property at component level

Runtime Monitoring Results

• Example with credit card validation time
� Observable at the design level
� Important for system performance
� Typical subject of service level agreements

• Observed statistical time distribution

CoCoME seminar, Dagstuhl 07

Checks prototype implementation functionality

Checks whether the bank meets the service level agreement

• Observed load on the bank component
Checks whether the store meets the service level agreement

• Measurement overhead
Shows how intrusive the infrastructure is

Conclusion

• Static view
� The (slightly modified) architecture captured in Fractal
� Buses replaced by components

• No problems with synchronous communication
• Asynchronous delivery difficult to model in BPs
• Approximation using explicit buffers but awkward results

CoCoME seminar, Dagstuhl 07

� Intention to preserve the original architecture
as much as possible did not pay off

• We should have made more changes
• Developers would do them during iterations anyway

• Runtime monitoring
� Fully transparent monitoring
� Can be used to check or enforce service level agreements

Conclusion

• BP versus UML
� BP integrates

• Number of UML Sequence Diagrams
• Use Case textual descriptions
• Reference implementation

� BP captures
• all traces corresponding to

CoCoME seminar, Dagstuhl 07

• all traces corresponding to
a particular start call in
a sequence diagram

• component hierarchy

• Static verification
� feasible steps

• protocol compliance
• verification of code against frame protocols

BP

Seq
diagrams

Use cases

Ref. Impl

Code=

CoCoME seminar, Dagstuhl 07

Thank You

http://dsrg.mff.cuni.cz/cocome

