
Service-Oriented Modeling of CoCoME

with FOCUS and AutoFOCUS

Florian Hölzl

CoCoME Seminar Dagstuhl 02.08.2007

Department of Informatics

Chair IV: Software & Systems Engineering1

Florian Hölzl

Chair IV: Software and Systems Engineering

Department of Informatics

Technische Universität München

Our Team

Dr. Bernhard Schätz Model-Based Software Development

Michael Meisinger Service-Based Software Development

Sabine Rittmann Service-Oriented Software Engineering

Doris Wild Automotive Software and System Design

Maria Spichkova Verification of Embedded Systems

Department of Informatics

Chair IV: Software & Systems Engineering2

Jorge Fox Aspect Oriented Software Development

Dagmar Koss Compatibility

Birgit Penzenstadler Requirements Engineering for Subsystems

Marco Kuhrmann Process Models

Florian Hölzl Tool Support in Model-Based Development

Responsibilities / Contributions

Theory

Service Architecture Level

Department of Informatics

Chair IV: Software & Systems Engineering3

Logical Architecture Level

Deployment Level

Modeling Approach

Functional/

Service Arch.

Level

Formal

Specification

Level

Informal

Requirements

Level

Use Cases

 Formal Specification

Service Model

Formalization

Design Step:

Operationalization

Validation

System
 (invariant)
(error-cond)

‾ (progress)
‾ scenario1

Semantical

Interpretation

C4

C1 C2

C3

cdd SYSTEM cmd SYSTEM
R2R1

request

msc service1

Functional

Design

Department of Informatics

Chair IV: Software & Systems Engineering4

Technical Architecture Model

Logical Architecture Model

Level

Logical

Architecture

Level

Deployment

Level

Implementation Step:

Transformation

Refinement

Implementation Step:

Infrastructure Mapping

Replication

C4

C1 C2

C3

Implementation

Level

Implementation

ECU

 CPU1 DB

 CPU2

Implementation Step:

Source Code Gen

Manual Impl.

2:C

1:C
1:D

x

y

Part I: The FOCUS Component Model

Department of Informatics

Chair IV: Software & Systems Engineering5

System Model

Streams

Strong Causality

Composition

System Model

lc

clLM Control RM

cr

rc

kc

Component

Component
Name

Department of Informatics

Chair IV: Software & Systems Engineering6

Channel

System consists of

• named Components (with encapsulated States / State Machine)

• named Channel (possibly typed)

with a model of DISCRETE GLOBAL TIME

Channel
Name

Modelling Channels: Streams

Terminology

• Channels connect two Subsystems or a System and

its Environment (Input or Output Channels)

• Streams model Communication History of Channels

Department of Informatics

Chair IV: Software & Systems Engineering7

• Streams model Communication History of Channels

• Composed Systems are defined by Recursive

Equations over Streams

Streams

Let M be the set of messages

M* Set of finite sequences over M

〈〉 empty sequence

M∞ Set of infinite sequences over M IN \ {0} → M

Department of Informatics

Chair IV: Software & Systems Engineering8

Mω Set of streams: Mω = M* ∪ M∞

(M*)∞ Set of timed streams over M -

a sequence of messages for each time interval

Timed Streams

E

eq

qe
Q

Semantic Model for Interface Behavior

Infinite Channel
Set of messages:

Department of Informatics

Chair IV: Software & Systems Engineering9

t t+1 t+2 t+3

<a,d,a,b> <>

Messages in time
interval t

Infinite Channel
History M = {a, b, c, ...}

Interface Model

I = { x1, x2, …} set of input channels

O = {y1, y2, …} set of output channels

Interface Behavior: map input histories to output histories

Department of Informatics

Chair IV: Software & Systems Engineering10

x 1 : S 1
x n : S n

y1 : T 1

ym : T m
F

M M

Strong Causality

Interface Behavior

Strong Causality

Department of Informatics

Chair IV: Software & Systems Engineering11

I O

F

A causal component F is total,
e.g. F.x ≠ ∅ for all x,
OR F.x = ∅ für alle x

Composition of Specifications

 in x1: M1 , x2: M2 , ...

 out y1: N1 , y2: N2 , ...

∃ c1, c2 , ... : P1 ∧ ... ∧ Pn

y
1
: N

1
x

1
: M

1

 Composed

 Componen t P

Department of Informatics

Chair IV: Software & Systems Engineering12

x
2
 : M

2

 Componen t

P
3

y
2
 : N

2

P
4

P
1

P
2

c
1
 : T

1

Part II: The CoCoME Model

Department of Informatics

Chair IV: Software & Systems Engineering13

Functional / Service Architecture

Logical Components Architecture

Deployment

Implementation

Functional / Service Architecture Level

• Identify abstract components

• Identify communication dependencies

• Identify modes of operation of components

• Specify the services of each component as MSC

• Compose services using higher-level MSCs

Department of Informatics

Chair IV: Software & Systems Engineering14

• Compose services using higher-level MSCs

• Refactor components, modes and services as needed

• Semantical Interpretation into Behavior Automata

Functional System Decomposition

• System decomposes into communicating entities

Department of Informatics

Chair IV: Software & Systems Engineering15

Component Mode Diagram

Department of Informatics

Chair IV: Software & Systems Engineering16

High-Level Message Sequence Chart

Department of Informatics

Chair IV: Software & Systems Engineering17

Hierarchical HMSC Decomposition

Department of Informatics

Chair IV: Software & Systems Engineering18

Service Message Sequence Chart

Department of Informatics

Chair IV: Software & Systems Engineering19

Subservice Message Sequence Chart

Department of Informatics

Chair IV: Software & Systems Engineering20

Semantical Interpretation

• Behavior Automata

Department of Informatics

Chair IV: Software & Systems Engineering21

Functional Architecture Properties

• Consistency

– Service specification comply with mode switches

– Interaction with externals comply with interface specification

• Completeness

– Internal and external services have a service specifications

Department of Informatics

Chair IV: Software & Systems Engineering22

– Internal and external services have a service specifications

– Service specification exist for each mode and mode transition

• Closed World Assumption

– Complete consistent set of services form the exact

specification of the components‘ behavior

Functional Architecture Level Results

Department of Informatics

Chair IV: Software & Systems Engineering23

Logical Architecture Level

• Map Services to Logical Components

• Map Messages to Data Types

• Specify System Structure

• Transform Behavior Automata to FOCUS Timed

State Transition Automata

Department of Informatics

Chair IV: Software & Systems Engineering24

State Transition Automata

• Complete the FOCUS specification

Mapping Services to Logical Components

Department of Informatics

Chair IV: Software & Systems Engineering25

Mapping Messages to Data Structures

Department of Informatics

Chair IV: Software & Systems Engineering26

CashDesk System Structure Specification

Department of Informatics

Chair IV: Software & Systems Engineering27

CashDesk Node Structure Specification

CashBox(i)

kindb: PaymentKind

pd: ProductAck

ackb: PaymentAck

express: Bool

BarCodeScanner(i)
cs: ProductBarcode cash: N

cbi: CashBoxInfo

cb: ProductBarcode

start: Event

stop: Event

mcode: ProductBarcode

mcard: PaymentKind

mcash: N

mchange: N

expOff: Event
expEnabled: Event

expDisabled Event

abort: Event

Department of Informatics

Chair IV: Software & Systems Engineering28

info: SaleInfo

c: ProductBarcode

bdata: BankData

CardReader(i)
pinr: CardPIN

numr: CardNumber

ackcd: PaymentAck

Printer(i)

print: Bool

pdata: ProductData

CashDeskGUI(i)

sum: N

given: N

change: N

kind: PaymentKind

CashDeskControl

(i)

amount: N

expDisabled: Event

printHeader: Event

activate: Event

eModeViol: Event

cleanOut: Event

Transformation of Behavior Automata

• Merge parallel output actions

• Remove epsilon transitions

• Merge local variable transformations

• Remove internal communication

• Merge general computation

Department of Informatics

Chair IV: Software & Systems Engineering29

• Merge general computation

• Transform messages into FOCUS syntax

• RESULT: FOCUS time state transition diagrams

Merge Parallel Output Actions

Department of Informatics

Chair IV: Software & Systems Engineering30

Remove Epsilon Transitions

Department of Informatics

Chair IV: Software & Systems Engineering31

Merge Local Variable & Internal Comm.

• Local Variables are updated

• Intra-component communication is removed

Department of Informatics

Chair IV: Software & Systems Engineering32

Merge General Computation

Department of Informatics

Chair IV: Software & Systems Engineering33

Transform to FOCUS Syntax

Department of Informatics

Chair IV: Software & Systems Engineering34

CashDeskControl Behavior Specification

Department of Informatics

Chair IV: Software & Systems Engineering35

Complete FOCUS Specification (I)

Department of Informatics

Chair IV: Software & Systems Engineering36

Complete FOCUS Specification (II)

Department of Informatics

Chair IV: Software & Systems Engineering37

Logical Architecture Level Results

Store

info[i]: SaleInfo

pd[i]: ProductAck

bdata[i]: BankData

ackb[i]: PaymentAck

Node(i)

c[i]: ProductBarcode

CashDeskCoord

infoc:

ProductBarcode

i [1..n]

ord: N

allpr: ProductDescr

receive:

InventoryData

Bank

start[i]: Event

stop[i]: Event

mcode[i]:

ProductBarcode

mcard[i]:

PaymentKind

mcash[i]: N

mchange[i]: N
expEnabled[i]: Event

expOff[i]:Event

ackinv:

Event

ExpressDisplay(i)

express[i]: Bool

changeprice:

ChPrice

ackrcv: Event

Department of Informatics

Chair IV: Software & Systems Engineering38

deficiency: ProductDescrchanged: Bool

CashBox(i)

kindb: PaymentKind

info: SaleInfo

c: ProductBarcode

pd: ProductAck

bdata: BankData

ackb: PaymentAck

express: Bool

BarCodeScanner(i)
cs: ProductBarcode

CardReader(i)
pinr: CardPIN

numr: CardNumber

ackcd: PaymentAck

Printer(i)

print: Bool

pdata: ProductData

CashDeskGUI(i)

sum: N

given: N

cash: N

change: N

cbi: CashBoxInfo

kind: PaymentKind

CashDeskControl

(i)

cb: ProductBarcode

amount: N

start: Event

stop: Event

mcode: ProductBarcode

mcard: PaymentKind

mcash: N

mchange: N

expOff: Event
expEnabled: Event

expDisabled: Event

abort: Event

printHeader: Event

activate: Event

eModeViol: Event

cleanOut: Event

Deployment Level

• Technical Architecture

– Components are arbitrarily clustered into Tasks

– Tasks form executable objects implementing the behavior

• Operational Architecture

– Deployment Infrastructure

Department of Informatics

Chair IV: Software & Systems Engineering39

– Deployment Infrastructure

• Thread

• Remote Method Invocation Facility

– Execution Environment / Target Platform

• Java Virtual Machines

• TA + OA + External IFC = Executable System

Deployment Methodology

• Embed every logical

component in a Task

• Embed entities of the

technical architecture into

Task

LogicalComponent

co
m
m
u
n
ic
a
te

*

Logical Architecture

Technical Architecture

Department of Informatics

Chair IV: Software & Systems Engineering40

technical architecture into

entities of the operational

architecture

• Most code is generated

• External interfaces

connected manually

1

VirtualMachine

runs_on Operational Architecture

Deployment Example

Department of Informatics

Chair IV: Software & Systems Engineering41

• RMI calls synchronized by Producer / Consumer

• Strong Causality ensures Dead-lock freedom

• Synchronous Message Exchange + NoVal Messages

= Asynchronous Communication

AutoFOCUS 2 Model: Mock-up Prototype

Department of Informatics

Chair IV: Software & Systems Engineering42

Handwritten Implementation: Mock-up PT

• Manual part override dummy automata

Department of Informatics

Chair IV: Software & Systems Engineering43

Part III: Conclusion and Experiences

Department of Informatics

Chair IV: Software & Systems Engineering44

Summary

Lessons Learned

Summary

Logical Architecture Model

Functional/

Service Arch.

Level

Logical

Architecture

Level

Service Model

Implementation Step:

Transformation

Refinement

C4

C1 C2

C3

Semantical

Interpretation

C4

C1 C2

C3

cdd SYSTEM cmd SYSTEM
R2R1

request

msc service1

x

y

Department of Informatics

Chair IV: Software & Systems Engineering45

Technical Architecture Model

Deployment

Level

Implementation Step:

Infrastructure Mapping

Replication

Implementation

Level

Implementation

ECU

 CPU1 DB

 CPU2

Implementation Step:

Source Code Gen

Manual Impl.

2:C

1:C
1:D

Lessons Learned

• Instantiation changes system structure in Deployment

– Connecting N cashdesks with the inventory changes the

inventory behavior

– Using a merger / bus component changes delay in the

communication from cashdesk to inventory

• Our methodology works for distributed teams

Department of Informatics

Chair IV: Software & Systems Engineering46

• Our methodology works for distributed teams

– Service Level Team analyzed requirements

– Logical Level Team used service architecture specification

– Deployment Team used logical architecture specification

Part IV: Demonstration

Department of Informatics

Chair IV: Software & Systems Engineering47

AutoFOCUS 2 Model

System in Action

Backup

Department of Informatics

Chair IV: Software & Systems Engineering48

Detailed Service Specification I

Department of Informatics

Chair IV: Software & Systems Engineering49

Detailed Service Specification II

Department of Informatics

Chair IV: Software & Systems Engineering50

Detailed Service Specification III

Department of Informatics

Chair IV: Software & Systems Engineering51

Detailed Service Specification IV

Department of Informatics

Chair IV: Software & Systems Engineering52

Parallel reaction problem

Department of Informatics

Chair IV: Software & Systems Engineering53

