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Theory
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Part I: The FOCUS Component Model
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System Model

Streams

Strong Causality

Composition



System Model
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Channel

System consists of 

• named Components (with encapsulated States / State Machine)

• named Channel (possibly typed)

with a model of DISCRETE GLOBAL TIME

Channel 
Name



Modelling Channels: Streams

Terminology

• Channels connect two Subsystems or a System and 

its Environment (Input or Output Channels)

• Streams model Communication History of Channels
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• Streams model Communication History of Channels

• Composed Systems are defined by Recursive

Equations over Streams



Streams

Let M be the set of messages

M* Set of finite sequences over M

〈〉 empty sequence

M∞ Set of infinite sequences over M IN \ {0} → M
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Mω Set of streams: Mω = M* ∪ M∞

(M*)∞ Set of timed streams over M -

a sequence of messages for each time interval



Timed Streams

E

eq
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Q

Semantic Model for Interface Behavior

Infinite Channel 
Set of messages:
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t t+1 t+2 t+3

<a,d,a,b> <>

Messages in time 
interval t

Infinite Channel 
History M = {a, b, c, ...}



Interface Model

I = { x1, x2, …} set of input channels

O = {y1, y2, …} set of output channels

Interface Behavior: map input histories to output histories
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x 1 : S 1 
x n : S n  

y1 : T 1  

ym : T m  
F 

M M  



Strong Causality

Interface Behavior

Strong Causality
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I O

F

A causal component F is total,
e.g. F.x ≠ ∅ for all x,
OR F.x = ∅ für alle x 



Composition of Specifications

 

 

  in   x1: M1 , x2: M2 , ... 

  out  y1: N1 , y2: N2 , ... 
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Part II: The CoCoME Model
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Functional / Service Architecture

Logical Components Architecture

Deployment

Implementation



Functional / Service Architecture Level

• Identify abstract components

• Identify communication dependencies

• Identify modes of operation of components

• Specify the services of each component as MSC

• Compose services using higher-level MSCs
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• Compose services using higher-level MSCs

• Refactor components, modes and services as needed

• Semantical Interpretation into Behavior Automata



Functional System Decomposition

• System decomposes into communicating entities
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Component Mode Diagram
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High-Level Message Sequence Chart

Department of Informatics

Chair IV: Software & Systems Engineering17



Hierarchical HMSC Decomposition
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Service Message Sequence Chart

Department of Informatics

Chair IV: Software & Systems Engineering19



Subservice Message Sequence Chart
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Semantical Interpretation

• Behavior Automata
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Functional Architecture Properties

• Consistency

– Service specification comply with mode switches

– Interaction with externals comply with interface specification

• Completeness

– Internal and external services have a service specifications
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– Internal and external services have a service specifications

– Service specification exist for each mode and mode transition

• Closed World Assumption

– Complete consistent set of services form the exact 

specification of the components‘ behavior



Functional Architecture Level Results
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Logical Architecture Level

• Map Services to Logical Components

• Map Messages to Data Types

• Specify System Structure

• Transform Behavior Automata to FOCUS Timed 

State Transition Automata
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State Transition Automata

• Complete the FOCUS specification



Mapping Services to Logical Components
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Mapping Messages to Data Structures
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CashDesk System Structure Specification
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CashDesk Node Structure Specification

CashBox(i)

kindb: PaymentKind

pd: ProductAck

ackb: PaymentAck

express: Bool

BarCodeScanner(i)
cs: ProductBarcode cash: N

cbi: CashBoxInfo

cb: ProductBarcode

start: Event

stop: Event

mcode: ProductBarcode

mcard: PaymentKind

mcash: N

mchange: N

expOff: Event
expEnabled: Event

expDisabled Event

abort: Event
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info: SaleInfo

c: ProductBarcode

bdata: BankData

CardReader(i)
pinr: CardPIN

numr: CardNumber

ackcd: PaymentAck

Printer(i)

print: Bool

pdata:  ProductData

CashDeskGUI(i)

sum: N

given: N

change: N

kind: PaymentKind

CashDeskControl

(i)

amount: N

expDisabled: Event

printHeader: Event

activate: Event

eModeViol: Event

cleanOut: Event



Transformation of Behavior Automata

• Merge parallel output actions

• Remove epsilon transitions

• Merge local variable transformations

• Remove internal communication

• Merge general computation
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• Merge general computation

• Transform messages into FOCUS syntax

• RESULT: FOCUS time state transition diagrams



Merge Parallel Output Actions
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Remove Epsilon Transitions
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Merge Local Variable & Internal Comm.

• Local Variables are updated

• Intra-component communication is removed
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Merge General Computation
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Transform to FOCUS Syntax

Department of Informatics

Chair IV: Software & Systems Engineering34



CashDeskControl Behavior Specification
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Complete FOCUS Specification (I)
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Complete FOCUS Specification (II)
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Logical Architecture Level Results

Store

info[i]: SaleInfo

pd[i]: ProductAck

bdata[i]: BankData

ackb[i]: PaymentAck

Node(i)

c[i]: ProductBarcode

CashDeskCoord

infoc: 

ProductBarcode

i  [1..n]

ord: N

allpr: ProductDescr

receive: 

InventoryData

Bank

start[i]: Event

stop[i]: Event

mcode[i]: 

ProductBarcode

mcard[i]: 

PaymentKind

mcash[i]: N

mchange[i]: N
expEnabled[i]: Event

expOff[i]:Event

ackinv: 

Event

ExpressDisplay(i)

express[i]: Bool

changeprice: 

ChPrice

ackrcv: Event 
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deficiency: ProductDescrchanged: Bool

CashBox(i)

kindb: PaymentKind

info: SaleInfo

c: ProductBarcode

pd: ProductAck

bdata: BankData

ackb: PaymentAck

express: Bool

BarCodeScanner(i)
cs: ProductBarcode

CardReader(i)
pinr: CardPIN

numr: CardNumber

ackcd: PaymentAck

Printer(i)

print: Bool

pdata:  ProductData

CashDeskGUI(i)

sum: N

given: N

cash: N

change: N

cbi: CashBoxInfo

kind: PaymentKind

CashDeskControl

(i)

cb: ProductBarcode

amount: N

start: Event

stop: Event

mcode: ProductBarcode

mcard: PaymentKind

mcash: N

mchange: N

expOff: Event
expEnabled: Event

expDisabled: Event

abort: Event

printHeader: Event

activate: Event

eModeViol: Event

cleanOut: Event



Deployment Level

• Technical Architecture

– Components are arbitrarily clustered into Tasks

– Tasks form executable objects implementing the behavior

• Operational Architecture

– Deployment Infrastructure
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– Deployment Infrastructure

• Thread

• Remote Method Invocation Facility

– Execution Environment / Target Platform

• Java Virtual Machines

• TA + OA + External IFC = Executable System



Deployment Methodology

• Embed every logical 

component in a Task

• Embed entities of the 

technical architecture into 

Task

LogicalComponent

co
m
m
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Logical Architecture

Technical Architecture
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technical architecture into 

entities of the operational 

architecture

• Most code is generated

• External interfaces 

connected manually

1

VirtualMachine

runs_on Operational Architecture



Deployment Example
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• RMI calls synchronized by Producer / Consumer

• Strong Causality ensures Dead-lock freedom

• Synchronous Message Exchange + NoVal Messages 

= Asynchronous Communication



AutoFOCUS 2 Model: Mock-up Prototype
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Handwritten Implementation: Mock-up PT

• Manual part override dummy automata
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Part III: Conclusion and Experiences
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Summary

Lessons Learned



Summary
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Lessons Learned

• Instantiation changes system structure in Deployment

– Connecting N cashdesks with the inventory changes the 

inventory behavior

– Using a merger / bus component changes delay in the 

communication from cashdesk to inventory

• Our methodology works for distributed teams
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• Our methodology works for distributed teams

– Service Level Team analyzed requirements

– Logical Level Team used service architecture specification

– Deployment Team used logical architecture specification



Part IV: Demonstration
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AutoFOCUS 2 Model

System in Action



Backup
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Detailed Service Specification I
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Detailed Service Specification II
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Detailed Service Specification III
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Detailed Service Specification IV
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Parallel reaction problem
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