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• Introduction
– The team

• The DisCComp Approach
– History of DisCComp and motivation for participating in 

the contest

– Foundations of the system model (formal semantics)

– Foundations of the specification technique

Overview
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– Foundations of the specification technique

• The Modelled CoCoME Cutout
– Static view

– Behavioural view

• Conclusion
– Experiences, limitations

– Future work
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• Affiliation

– TU Clausthal, Software Systems Engineering Group (formerly 
known as Software Architecture Group from Kaiserslautern)

• Members

– André Appel, Holger Klus, Andreas Rausch, Sebastian Herold

• Component Approach

– DisCComp: A Formal Model for Distributed Concurrent 

The DisCComp Team
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– DisCComp: A Formal Model for Distributed Concurrent 
Components

• Specification Technique

– UML-based, OCL-based

• Experiences

– Seamless UML software/system modeling

– Software architecture in general
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The DisCComp Approach

The DisCComp Approach
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The DisCComp Approach

• DisCComp: set-theoretic formalization of 
distributed concurrent components which allows

– synchronous and asynchronous messages

– a shared global state

– dynamically changing structures

DisCComp: Introduction
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The DisCComp Approach

• History
– Early versions only supported asynchronous communication

– Early versions based on timed streams (global clock)

– Specification technique extended UML 1.x (due to missing 
features of UML)

– Specification technique was not extended according to 
system model extensions

– Specification technique partly hard to use (contracts)

DisCComp: Introduction
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– Specification technique partly hard to use (contracts)

• Motivation for participating in the contest
– New specification technique required:

• based on UML2 if possible

• with better usability

• consistent to the formal system model

– Answering the question: Can systems of practically relevant 
size and functionality be modelled with DisCComp?
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The DisCComp Approach

• Instances in a system s:

• The system state

– Structural state

DisCComp: The System Model

ssss

ssssss

ValueThreadCallMessage

ConnectionAttributeInterface Component System:Instance

∪∪∪

∪∪∪∪∪=
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– Structural state

– Valuation state
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The DisCComp Approach

• The system state

– Communication state

– Execution state

DisCComp: The System Model

*

sss MessageInterface:evaluation →

*

ssss )Call(InterfaceThread:execution ×→

Modelling CoCoME with DisCComp

©Sebastian Herold

• The system’s overall state at some 

point in time e is denoted as snapshot:
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The DisCComp Approach

Thread Behaviour: What Happens Between Snapshots?
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• A thread is selected for execution (runtime environment).

• Pending asynchronous messages are processed, threads are created.

• Changes, the threads requires, are computed by:
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The DisCComp Approach

• Operator to replace elements in sets (relations):

• Composing the system behaviour (=computing 

the next snapshot)

System Behaviour: Composition of Thread Behaviours
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The DisCComp Approach

• State of the DisCComp specification art
– Remember: current state of 

specification technique does not reflect 
the state of system model (synchronous 
method calls)

– UML 1.x -> UML 2.1

– specification of pre-/post-conditions 
causes massive overhead

• Main idea: 
– Static description: UML component and 

class diagrams

DisCComp Specifications
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class diagrams

– Abstract behaviour description of 
required interfaces by using OCL 
invariants, pre- and post-conditions

– Textual (imperative) behaviour
specification of assured interfaces

– Generation of pre- and post-conditions 
for assured interfaces by analyzing 
imperative specifications, when wiring 
components
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The DisCComp Approach

Static View: Component Diagrams

Modelling CoCoME with DisCComp
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The DisCComp Approach

• Focus here: extend existing fine-grained language by 

introducing some keywords with defined semantics.

• For example, creating instances:
– ifInst : IfType = NEW INTERFACE IfType [CONNECT BY

ConnType]

Create new interface instance of type IfType. Assign it to the “current 

component”. Connect it with current interface (optional). 

– connInst : ConnType = NEW CONNECTION ConnType TO 

Textual Specification of Interface Behaviour

Modelling CoCoME with DisCComp
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– connInst : ConnType = NEW CONNECTION ConnType TO 

ifInst

Create new connection between the current interface and ifInst. Types must 

be consistent to the component and class diagrams.

• Return values:
– CONNECT ifInst TO CALLER AND REASSIGN

Leave method, return to calling interface, and leave ifInst to the calling 

component.
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The Modelled CoCoME Cutout

The Modelled CoCoME Cutout
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The Modelled CoCoME Cutout
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The Modelled CoCoME Cutout

Modelled Cutout: Use Case ChangePrice

Modelling CoCoME with DisCComp
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The Modelled CoCoME Cutout

• Simplified behaviour (without technical 

components)

– Snapshots of inventory system

Inventory System at Runtime (DisCComp Snapshots)

Modelling CoCoME with DisCComp
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The Modelled CoCoME Cutout

Static Specification: Atomic Components

Modelling CoCoME with DisCComp
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The Modelled CoCoME Cutout

INTERFACE StoreQueryIfR

METHOD queryStockItemById(long sId): StockItemR

Pre: sId >= 0

Post: let queriedItems : Set(StockItemR) = stockItemR->select(s|s.getId()=sId) in

if queriedItems->notEmpty then

result = queriedItems->first();

else

result = NULL

endif

END METHOD

END INTERFACE

Textual Description of Required Interfaces

Modelling CoCoME with DisCComp
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END INTERFACE
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INTERFACE StockItemR

METHOD getId():long

Post: result = self@pre.getId()

END METHOD   

…      

END INTERFACE
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The Modelled CoCoME Cutout

INTERFACE StoreIf

METHOD changePrice(StockItemTO stockItemTO) : ProductWithStockItemTO

result : ProductWithStockItemTO:=NEW INTERFACE ProductWithStockItemTO;

pctx : PersistenceContextR:=persistenceIfR.getPersistenceContext();

tx : TransactionContextR :=pif.getTransactionContext();

tx.beginTransaction();

si : StockItemR := storequeryIfR.queryStockItemById(stockItemTO.getId());

IF (si != NULL) THEN

.

. //copy data to result object if si != NULL

.

CONNECT result TO CALLER AND REASSIGN;

Textual description of Assured Interfaces

Modelling CoCoME with DisCComp
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CONNECT result TO CALLER AND REASSIGN;

ENDIF

RETURN NULL;

END METHOD

02.08.2007
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The Modelled CoCoME Cutout

Hierarchical Components

Modelling CoCoME with DisCComp
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Conclusion

Conclusion
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Conclusion
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Conclusion

• DisCComp provides a formal model for distributed 
concurrent components

– Supports asynchronous and synchronous 
communication (as required in CoCoME)

– Specification technique partly based on UML and OCL, 
modular specifications by contracts

• Lessons learned

Summary and Experiences

Modelling CoCoME with DisCComp
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• Lessons learned

– Adequate specification technique: we modelled the 
cutout rather quickly (compared to early DisCComp
specifications)

– We were able to model the functionality of the cutout 
in terms of DisCComp

– OCL is troublesome
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Conclusion

• Limitations

– Non-functional properties are not considered

• Future work

– Semantic foundation of specification technique has to 

Limitations and Future Work
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– Semantic foundation of specification technique has to 
be completed

– Generation of pre- and post-conditions: what is 
possible?

– Extend tool support

• Specification tool DesignIt has to be modified according to 
new specification technique

• Extension for generation as mentioned above
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Conclusion

Thank you for your attention!

Any Questions

Modelling CoCoME with DisCComp
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Any Questions


