
SSESSESSESSE

Modelling CoCoME with

DisCComp

Dagstuhl Workshop, 02.08.2007

Clausthal University of Technology

Department of Informatics – Software Systems Engineering

Chair of Prof. Dr. Andreas Rausch

Dagstuhl Workshop, 02.08.2007

Sebastian Herold

Introduction

SSESSESSESSE

• Introduction
– The team

• The DisCComp Approach
– History of DisCComp and motivation for participating in

the contest

– Foundations of the system model (formal semantics)

– Foundations of the specification technique

Overview

Modelling CoCoME with DisCComp

©Sebastian Herold

– Foundations of the specification technique

• The Modelled CoCoME Cutout
– Static view

– Behavioural view

• Conclusion
– Experiences, limitations

– Future work

02.08.2007 2

Introduction

SSESSESSESSE

• Affiliation

– TU Clausthal, Software Systems Engineering Group (formerly
known as Software Architecture Group from Kaiserslautern)

• Members

– André Appel, Holger Klus, Andreas Rausch, Sebastian Herold

• Component Approach

– DisCComp: A Formal Model for Distributed Concurrent

The DisCComp Team

Modelling CoCoME with DisCComp

©Sebastian Herold

– DisCComp: A Formal Model for Distributed Concurrent
Components

• Specification Technique

– UML-based, OCL-based

• Experiences

– Seamless UML software/system modeling

– Software architecture in general

02.08.2007 3

Introduction

SSESSESSESSEScope and Purpose of DisCComp

Business Model (CIM)

Analysis Model (PIM)

Business Development

Requirements Analysis

System Activity

Diagram

System Domain

Entity Diagram

System UseCase

Diagram

Business Process

Diagram

Business Structure

Diagram

Business Use

Case Diagram

Modelling CoCoME with DisCComp

©Sebastian Herold 402.08.2007

Design Model (ASM)

Implementation Model (PSM)

Architectural Design

Imlementation Modeling

Implementation Behaviour

Diagram

Implementation Interface

Diagram-

Implementation Structure

Diagram

Component Behaviour

Diagram

Component Interface

Diagram

Component Structure

Diagran

DiagramEntity DiagramDiagram

SSESSESSESSE

The DisCComp Approach

The DisCComp Approach

Modelling CoCoME with DisCComp

©Sebastian Herold 5

The DisCComp Approach

02.08.2007

SSESSESSESSE

The DisCComp Approach

• DisCComp: set-theoretic formalization of
distributed concurrent components which allows

– synchronous and asynchronous messages

– a shared global state

– dynamically changing structures

DisCComp: Introduction

Modelling CoCoME with DisCComp

©Sebastian Herold
02.08.2007 6

SSESSESSESSE

The DisCComp Approach

• History
– Early versions only supported asynchronous communication

– Early versions based on timed streams (global clock)

– Specification technique extended UML 1.x (due to missing
features of UML)

– Specification technique was not extended according to
system model extensions

– Specification technique partly hard to use (contracts)

DisCComp: Introduction

Modelling CoCoME with DisCComp

©Sebastian Herold

– Specification technique partly hard to use (contracts)

• Motivation for participating in the contest
– New specification technique required:

• based on UML2 if possible

• with better usability

• consistent to the formal system model

– Answering the question: Can systems of practically relevant
size and functionality be modelled with DisCComp?

02.08.2007 7

SSESSESSESSE

The DisCComp Approach

• Instances in a system s:

• The system state

– Structural state

DisCComp: The System Model

ssss

ssssss

ValueThreadCallMessage

ConnectionAttributeInterface Component System:Instance

∪∪∪

∪∪∪∪∪=

Modelling CoCoME with DisCComp

©Sebastian Herold

– Structural state

– Valuation state

02.08.2007 8

}Interface to,InterfaceComponentfrom|to){(from,Connection:connects

InterfaceAttribute:allocation

ComponentInterface:assignment

BOOLEANInstance:alive

sssss

sss

sss

ss

∈∪∈→=

→=

→=

→=

sss ValueAttribute:valuation →=

SSESSESSESSE

The DisCComp Approach

• The system state

– Communication state

– Execution state

DisCComp: The System Model

*

sss MessageInterface:evaluation →

*

ssss)Call(InterfaceThread:execution ×→

Modelling CoCoME with DisCComp

©Sebastian Herold

• The system’s overall state at some

point in time e is denoted as snapshot:

02.08.2007 9

e

s

e

s

e

s

e

s

e

s

e

s

e

s

executionevaluationvaluation

connectsallocationassignmentalive

××

××××:snapshote

s

SSESSESSESSE

The DisCComp Approach

Thread Behaviour: What Happens Between Snapshots?

Modelling CoCoME with DisCComp

©Sebastian Herold

• A thread is selected for execution (runtime environment).

• Pending asynchronous messages are processed, threads are created.

• Changes, the threads requires, are computed by:

02.08.2007 10

())),(()(2 mix
e
sexecution =

)()(1 ai
e
sevaluation =

3,2,1{},)(
1

==
+

ji
e
sevaluation j

())),(()),,(()(32

1
fooimix

e
sexecution =

+

)),(()(1

1

amiy
e
sexecution =

+

ssss SnapshotSnapshotThread:behaviour →×

SSESSESSESSE

The DisCComp Approach

• Operator to replace elements in sets (relations):

• Composing the system behaviour (=computing

the next snapshot)

System Behaviour: Composition of Thread Behaviours

{})})(})({(|{: 11 =∩∧∈∨∈= YaXaYaaYX ππ<

 with,...),(:)(_ 111 e

s

e

s

e

s

e

s assignmentalivesnapshotsnapshotsnapshotnext ==

+

+++

Modelling CoCoME with DisCComp

©Sebastian Herold
02.08.2007 11

)))(_(()))_,(((

()))_,((

()))_,((

()))_,((

()))_,((

()))_,((

)))(_(()))_,(((

77

1

6

1

5

1

4

1

3

1

2

1

11

1

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s

snapshotexecutionmessagethreadnextsnapshotbehaviour

executionexecution

threadnextsnapshotbehaviourevaluationevaluation

threadnextsnapshotbehaviourvaluationvaluation

threadnextsnapshotbehaviourconnectsconnects

threadnextsnapshotbehaviourallocationallocation

threadnextsnapshotbehaviourassignmentassignment

snapshotexecutionmessagethreadnextsnapshotbehaviouralivealive

ππ

π

π

π

π

π

ππ

<

<

<

<

<

<

<

<<

=

=

=

=

=

=

=

+

+

+

+

+

+

+

SSESSESSESSE

The DisCComp Approach

• State of the DisCComp specification art
– Remember: current state of

specification technique does not reflect
the state of system model (synchronous
method calls)

– UML 1.x -> UML 2.1

– specification of pre-/post-conditions
causes massive overhead

• Main idea:
– Static description: UML component and

class diagrams

DisCComp Specifications

Modelling CoCoME with DisCComp

©Sebastian Herold

class diagrams

– Abstract behaviour description of
required interfaces by using OCL
invariants, pre- and post-conditions

– Textual (imperative) behaviour
specification of assured interfaces

– Generation of pre- and post-conditions
for assured interfaces by analyzing
imperative specifications, when wiring
components

02.08.2007 12

SSESSESSESSE

The DisCComp Approach

Static View: Component Diagrams

Modelling CoCoME with DisCComp

©Sebastian Herold
02.08.2007 13

SSESSESSESSE

The DisCComp Approach

• Focus here: extend existing fine-grained language by

introducing some keywords with defined semantics.

• For example, creating instances:
– ifInst : IfType = NEW INTERFACE IfType [CONNECT BY

ConnType]

Create new interface instance of type IfType. Assign it to the “current

component”. Connect it with current interface (optional).

– connInst : ConnType = NEW CONNECTION ConnType TO

Textual Specification of Interface Behaviour

Modelling CoCoME with DisCComp

©Sebastian Herold

– connInst : ConnType = NEW CONNECTION ConnType TO

ifInst

Create new connection between the current interface and ifInst. Types must

be consistent to the component and class diagrams.

• Return values:
– CONNECT ifInst TO CALLER AND REASSIGN

Leave method, return to calling interface, and leave ifInst to the calling

component.

02.08.2007 14

SSESSESSESSE

The Modelled CoCoME Cutout

The Modelled CoCoME Cutout

Modelling CoCoME with DisCComp

©Sebastian Herold 15

The Modelled CoCoME Cutout

02.08.2007

SSESSESSESSE

The Modelled CoCoME Cutout

Modelled Cutout: Use Case ChangePrice

Modelling CoCoME with DisCComp

©Sebastian Herold
02.08.2007 16

SSESSESSESSE

The Modelled CoCoME Cutout

• Simplified behaviour (without technical

components)

– Snapshots of inventory system

Inventory System at Runtime (DisCComp Snapshots)

Modelling CoCoME with DisCComp

©Sebastian Herold
02.08.2007 17

SSESSESSESSE

The Modelled CoCoME Cutout

Static Specification: Atomic Components

Modelling CoCoME with DisCComp

©Sebastian Herold
02.08.2007 18

SSESSESSESSE

The Modelled CoCoME Cutout

INTERFACE StoreQueryIfR

METHOD queryStockItemById(long sId): StockItemR

Pre: sId >= 0

Post: let queriedItems : Set(StockItemR) = stockItemR->select(s|s.getId()=sId) in

if queriedItems->notEmpty then

result = queriedItems->first();

else

result = NULL

endif

END METHOD

END INTERFACE

Textual Description of Required Interfaces

Modelling CoCoME with DisCComp

©Sebastian Herold

END INTERFACE

02.08.2007 19

INTERFACE StockItemR

METHOD getId():long

Post: result = self@pre.getId()

END METHOD

…

END INTERFACE

SSESSESSESSE

The Modelled CoCoME Cutout

INTERFACE StoreIf

METHOD changePrice(StockItemTO stockItemTO) : ProductWithStockItemTO

result : ProductWithStockItemTO:=NEW INTERFACE ProductWithStockItemTO;

pctx : PersistenceContextR:=persistenceIfR.getPersistenceContext();

tx : TransactionContextR :=pif.getTransactionContext();

tx.beginTransaction();

si : StockItemR := storequeryIfR.queryStockItemById(stockItemTO.getId());

IF (si != NULL) THEN

.

. //copy data to result object if si != NULL

.

CONNECT result TO CALLER AND REASSIGN;

Textual description of Assured Interfaces

Modelling CoCoME with DisCComp

©Sebastian Herold 20

CONNECT result TO CALLER AND REASSIGN;

ENDIF

RETURN NULL;

END METHOD

02.08.2007

SSESSESSESSE

The Modelled CoCoME Cutout

Hierarchical Components

Modelling CoCoME with DisCComp

©Sebastian Herold 2102.08.2007

SSESSESSESSE

Conclusion

Conclusion

Modelling CoCoME with DisCComp

©Sebastian Herold 22

Conclusion

02.08.2007

SSESSESSESSE

Conclusion

• DisCComp provides a formal model for distributed
concurrent components

– Supports asynchronous and synchronous
communication (as required in CoCoME)

– Specification technique partly based on UML and OCL,
modular specifications by contracts

• Lessons learned

Summary and Experiences

Modelling CoCoME with DisCComp

©Sebastian Herold 23

• Lessons learned

– Adequate specification technique: we modelled the
cutout rather quickly (compared to early DisCComp
specifications)

– We were able to model the functionality of the cutout
in terms of DisCComp

– OCL is troublesome

02.08.2007

SSESSESSESSE

Conclusion

• Limitations

– Non-functional properties are not considered

• Future work

– Semantic foundation of specification technique has to

Limitations and Future Work

Modelling CoCoME with DisCComp

©Sebastian Herold 24

– Semantic foundation of specification technique has to
be completed

– Generation of pre- and post-conditions: what is
possible?

– Extend tool support

• Specification tool DesignIt has to be modified according to
new specification technique

• Extension for generation as mentioned above

02.08.2007

SSESSESSESSE

Conclusion

Thank you for your attention!

Any Questions

Modelling CoCoME with DisCComp

©Sebastian Herold 2502.08.2007

Any Questions

