
KobrA-Team
Affiliation
University Mannheim

Team Leader
Daniel Brenner, dbrenner@uni-mannheim.de

Team Members
Colin Atkinson, Matthias Gutheil, Dietmar Stoll, Oliver Hummel, Giovanni Falcone, Philipp
Bostan

Component Model
We intend to use the KobrA method which supports a model-driven, UML-based
representation of components. This enables the benefits of component-based development to
be realized throughout the software life-cycle and allows the reusability of components to be
significantly enhanced. It provides techniques to:

• develop a model-driven architecture in which the key features of a system are
described independently of specific implementation platforms

• systematically reuse COTS components in new applications
• improve the quality of components and the systems assembled from them

SOFA-Team
Affiliation
Charles University, Prague, Czech Rep.

Team Leader
Frantisek Plasil, plasil@nenya.ms.mff.cuni.cz

Team Members
Frantisek Plasil, Jiri Adamek, Jan Kofron, Petr Hnetynka, Pavel Jezek, Tomas Bures, Pavel
Parizek

Component Model
We intend to use the SOFA 2.0 component platform [1,2]. SOFA 2.0 uses a hierarchical
component model formally defined using its meta-model [1].

DisCComp-Team
Affiliation
TU Kaiserslautern, AG Softwarearchitektur

Team Leader
Sebastian Herold, herold@informatik.uni-kl.de

Team Members
Sebastian Herold, Holger Klus, Andreas Rausch, Yannick Welsch

Component Model
DisCComp - A Formal Model for Distributed Concurrent Components

Our formal model is based on set-theoretic formalizations of distributed concurrent systems. It
allows modelling of dynamically changing structures, a shared global state and asynchronous
message communication as well as synchronous and concurrent message calls.

Ain Shams University Team
Affiliation
Ain Shams University, Cairo, Egypt

Team Leader
Islam El-Maddah, islam_elmaddah@yahoo.co.uk

Team Members
Islam A. M. El-Maddah

Component Model
The model combines formal and in formal description

Formal parts

1. A set of variables describing the internal state of the component
2. A set of agents (software/hardware) intended to control these variables
3. A hierarchy of and-or tree to represent component basic responsibilities. Each node of

this tree has formal pre- and post- conditions based on the variables

Each variable and agent and and-or tree node has formal and informal description. Different
analysis and checks can be applied on each component in order to ensure the basic
responsibilites will be correctly fulfilled. These checks include: consistency, completeness,
reachability, symbolic execusion.

TU/e Eindhoven-Team
Affiliation
TU/e – Technische Universiteit Eindhoven

Team Leader
Egor Bondarev, e.bondarev@tue.nl

Team Members
Michel Chaudron

Component Model
Our compositional analysis technique introduces (a) composable software and hardware
component models representing abstract specification of the component behaviour and
corresponding resources, (b) operational semantics enabling composition of the models into
an executable system model, and (c) simulation-based analysis of the obtained executable
model resulting in predicted performance attributes. Example attributes are response time,
throughput, utilization of processors, memory and communication lines. Special attention is
paid to modeling of both passive and active components exploiting synchronous method
invocation and asynchronous message passing interaction.
The component models itself are: behaviour, resource and process models.
For software components, our technique introduces three types of models: resource, behaviour
and process models. Typical models for hardware IP blocks are memory, communication and
processor performance models.
The resource model specifies resource requirements (e.g. number of claimed CPU
instructions) of each accessible individual operation of a component. The resource
requirements are obtained by profiling of each individual component on a reference processor.
The behaviour model describes the operation's underlying calls to operations of other
interfaces and various synchronization constraints (mutexing, critical sections, etc).
The process model specifies the processes activated and running within an active component.
For every process, the model describes process creation and release conditions, periodicity
and a sequence of underlying operation calls to other interfaces. The data for the behaviour
and process models is obtained by the source-code analysis.

KLAPER-Team
Affiliation
Politecnico di Milano

Team Leader
Raffaela Mirandola, mirandola@elet.polimi.it

Team Members
Vincenzo Grassi, Antonino Sabetta: Universita' Roma TorVergata, Italy
Moreno Marzolla: INFN Padova, Italy
Antinisca Di Marco, Vittorio Cortellessa: Universita' de L'Aquila

Component Model
KLAPER is a modeling language aiming to capture the relevant information for the analysis
of non-functional attributes of component-based systems, with a focus on performance and
reliability. We point out that KLAPER is not actually a "component model", but it is rather
meant as an itermediate model to be used in a transformation path from design-oriented
models to analysis-oriented models. For this purpose, its goal is to help in distilling relevant
information for analysis purposes from the original design-oriented model.
The idea underlying KLAPER is to provide support for the modeling of a system as an
assembly of interacting resources, where a resource denotes an entity that may offer services
(and possibly requires others). Each offered service is characterized by a list of formal
parameters that can be instantiated with actual values by other resources requiring that
service. The formal parameters and their corresponding actual parameters are meant to
represent a suitable analysis-oriented abstraction of the “real” service parameters. To support
performance or reliability analysis, each KLAPER service provides information about its
execution time or failure characteristics. A service behavior is characterized by a set of used
services and consists of a set of execution steps. Steps can model either an internal activity,
i.e. an activity performed by the same resource offering the service, or a set of service calls,
i.e. a set of requests for services offered by external resources.

CompoNets
Affiliation
LIIHS - IRIT - Université Toulouse 1

Team Leader
Rémi Bastide, Remi.Bastide@irit.fr

Team Members
Eric Barboni, Ph.D. student in Toulouse

Component Model
The proposed specification technique (called CompoNets as a contraction of 'Component' and
'Petri net') is based on a component model that complies with the current practice of software
engineering, in particular inspired by the CORBA Component Model. The originality of the
approach is to complement this component model with a behavioural specification notation
based on high-level Petri nets. This notation is used to specify the internal behaviour of the
components, that can exhibit internal concurrency and time- or event-based behaviour. In our
approach, the inter-components communication is also specified in terms of Petri nets.
Unicast synchronous communications can be modelled, as well as multicast, and publish-
subscribe communication styles. The approach is supported by a software tool called PetShop,
which supports the editing and execution of the models, as well as several forms of
verification based on Petri nets theory.

SPEEDS-Team
Affiliation
OFFIS e. V. (Oldenburger Forschungs- und Entwicklungsinstitut für Informatik-Werkzeuge
und –Systeme)

Team Leader
Eike Thaden, Eike.Thaden@offis.de

Team Members
Qin Ma, Alexander Metzner, Eike Thaden

Component Model
The SPEEDS project is a concerted effort to define the new generation of end-to-end
methodologies, processes and supporting tools for safety-critical embedded system design.
The bases of the SPEEDS project are so-called Heterogeneous Rich Components (HRC).
HRC components describe the structure and the behaviour of functional entities of embedded
systems. The structural specification part of a component uses blocks and ports as defined in
SYSML connectors for connecting components and for delegating method calls, signals, etc.
to subcomponents. The behavioural specification part of a component consists of viewpoints,
which focus on different aspects of the component, for example functional behaviour, safety
or realtime. Each viewpoint consists of a set of assertions which combine a set of assumptions
with a set of promises. The promises are guaranteed only if the assumptions are fulfilled. The
language used to formulate assumptions and promises is based on so-called extended state
machines, which allow the specification of discrete and continuous behaviour. Extended state
machines are formally defined in the semantics foundation of the HRC meta-model. Structural
and behavioural specifications will be used to check compatibility of HRC components. For
example two ports can be connected only if their protocol specifications consisting of
compatible assumptions and promises.

Abstraction is used heavily to reduce the complexity of system specifications. Between HRC
components there can exist a refine relationship, e. g. while the first component may talk only
about external visible elements without defining subcomponents, a refined one can also define

subcomponents and delegation. In embedded systems, beside a functional layer, where
components communicate via abstract message passing, also more concrete layers like the
ECU layer or the hardware layer are of interest. In the ECU layer, functional units are seen as
tasks, deployed to processors and communication is done using messages passed on busses.
On the hardware layer also internal specifications of processors and busses are visible.
Components of higher layers have more detailed representations in lower layers and are
"connected" to them with a mapping relation involving assumptions and promises.

Palladio-Team
Affiliation
Universität Karlsruhe (TH)

Team Leader
Ralf Reussner, reussner@ipd.uka.de

Team Members
Ralf Reussner, Steffen Becker, Heiko Koziolek, Klaus Krogmann, Michael Kuperberg,
Thomas Goldschmidt, Jens Happe

Component Model
The Palladio Component Model (http://sdqweb.ipd.uka.de/wiki/Palladio_Component_Model).
The Palladio Component Model (PCM) is a metamodel for a domain specific language to
describe systems build using components. It is designed to support a component based
software development process. Its special capabilities allow the system designer to do early
design time predictions of Quality of Service (QoS) attributes. The PCM is implemented
using the Eclipse Modeling Framework (EMF).

ADL-Team
Affiliation
University of California, San Diego

Team Leader
Ingolf Krueger, ikrueger@cs.ucsd.edu

Team Members
Massimiliano Menarini, mmenarini@ucsd.edu
Vina Ermagan, vermagan@cs.ucsd.edu

Component Model
The model we intend to use is a part of our Service-Oriented specification ADL. The model is
based on message passing between logical entities in the system. Our Service ADL (SADL)
uses two layers: a logical one that captures the interaction pattern among logical entities
(Roles), and a deployment layer that assign roles to physical components and logical
communication paths to physical connections.
The interaction patterns are described using a dialect of message sequence charts (MSC) that
contains various operators for service composition. The deployment part of the system is
described by a component diagram. Our SADL uses data flows diagrams, state charts, and
calls to external functions (written in some programming language suitable for the
deployment platform) to specify computations local to each Role, aka local actions, and
triggered by the interaction patterns captured in the MSCs.
Our SADL captures the concept of failure in a failure hypothesis model. This supports
catering to different types of failures both of logical and deployment elements of our model.
The formal semantics of our SADL is defined for the logical models over the set of infinite
streams capturing: the messages sent trough logical communication channels and the internal
state changes of each Role. A mapping between logical and deployment models establishes a
refinement relation between the logical specification and the implementation.

Grid Component Model Team
Affiliation
INRIA Sophia-Antipolis

Team Leader
Eric Madelaine, eric.madelaine@sophia.inria.fr

Team Members
Eric Madelaine, Ludovic Henrio, Antonio Cansado, Marcela Rivera, Emil Salageanu

Component Model
We work on the Grid Component Model that is a hierarchical, distributed, component model
for computationnal grids, defined in the CoreGrid NoE.
This is a component model inspired and extended from a distributed implementation of the
Fractal component model based on the ProActive library.

Our stress is on specification and validation of behavioural models of the components, based a
model called parameterized Networks of synchronized transition systems (Forte'04). We have
defined model-generation methods and a set of supporting tools, for checking safety
properties of components and validating their correct composition (Spin'05, Facs'05, Facs'06).
This work at the formal model level is backed-up by the ProActive implementation of the
component model, that is a wide-spread technology for developing component-based
applications (see e.g. the Grid@works plugtest series,
http://www.etsi.org/plugtests/Upcoming/GRID2006/GRID2006.html).

rCOS-Team
Affiliation
UNU-IIST

Team Leader
Zhiming Liu, lzm@iist.unu.edu

Team Members
Xin Chen, Dang Van Hung, Xiaoshan Li, Zhiming Liu, Vladimir Mencl, Joseph Okika,
Volker Stolz, Anders P. Ravn, Lu Yang, Naijun Zhan

Component Model
rCOS – A relational Calculus for Object Systems

Box-Model-Team
Affiliation
TU Kaiserslautern

Team Leader
Arnd Poetzsch-Heffter, poetzsch@informatik.uni-kl.de

Team Members
Jean-Marie Gaillourdet, Kathrin Geilmann, Arnd Poetzsch-Heffter, Markus Reitz, Jan Schäfer

Component Model
We intend to use our box-model (see: Formal Methods for Components and Objects, FMCO
2005. LNCS, volume 4111, Springer, p. 313--341, 2006). The box-model is a component
model based on object-oriented programming abstractions. The box-model is still under
development. It is meant to fill the gap between high-level descriptions and implementations
of component-based systems.
A box is a runtime entity with state and a semantics-based encapsulation boundary. The
implementation of a box consists of a number of classes and interfaces. A box is created by
instantiating one distinguished class of the implementation. A box can encapsulate other
boxes, so-called inner boxes. The result is a hierarchy of boxes at runtime.
A client of a box B can hold references to the objects at the boundary of B. Invocations on
boundary objects will be synchronized by the box, that is, from the outside a box essentially
exhibits a sequential behavior whereas execution inside a box is in general concurrent.
Box specifications describe the interface behavior in terms of abstract state changes and the
callbacks caused by method calls. The realization or architecture of a box B is described in
terms of its inner boxes B_i, the connections and interactions between the B_i's, and the
expression of B's abstract state in terms of its concrete state and the abstract states of the
B_i's.

SysML-Team
Affiliation
LIUPPA - Laboratoire d'Informatique de l'Université de Pau et des Pays de l'Adour

Team Leader
Jean-Michel Bruel, bruel@univ-pau.fr

Team Members
Belloir Nicolas, Bruel Jean-Michel, Dalmau Marc, Jobard Bruno, Laplace Sophie, Luthon
Franck, Pham Congduc, Roose Philippe

Component Model
We intend to use SysML improved with a profil dedicated to composition and to QoS
handeling.

Fractal-Team
Affiliation
Charles University in Prague

Team Leader
Frantisek Plasil, plasil@nenya.ms.mff.cuni.cz

Team Members
Frantisek Plasil, Thierry Coupaye, Nicolas Rivierre, Jiri Adamek, Tomas Bures, Jan Kofron,
Pavel Jezek

Component Model
We intend to use the Fractal component model and its ADL (Architecture Description
Language) for the architecture description and Behavior Protocols as a behavior specification
language. Behavior protocols are a general concept; therefore they can be used for various
component platforms.

LMU/DTU Team
Affiliation
Ludwig-Maximilians-Universität München

Team Leader
Alexander Knapp, knapp@pst.ifi.lmu.de

Team Members
Hubert Baumeister, Florian Hacklinger, Rolf Hennicker, Stephan Janisch, Alexander Knapp,
Martin Wirsing

Component Model
In FACS'05, see http://www.pst.ifi.lmu.de/veroeffentlichungen/baumeister-et-
al:facs:2005.pdf, we have described an abstract component model for components, ports, and
assemblies. We use the interface automata approach to I/O-transition systems for describing
the observable behaviour and the states-as-algebras approach for representing the internals of
components and assemblies. In particular, component and port types are modelled as sorts in
order to ease dynamic reconfiguration and dynamic creation and deletion. This abstract
component model is used as a formal underpinning for our architectural programming
language Java/A.

Focus/AutoFocus-Team
Affiliation
TU München

Team Leader
Michael Meisinger, meisinge@in.tum.de

Team Members
Michael Meisinger, Gerd Beneken, Florian Hölzl, Bernhard Schätz

Component Model
The Focus/AutoFocus approach uses the formalism of timed infinite streams to specify
component behavior. A system is formed of components that are connected via directed typed
channels. Components communicate via asynchronous message exchange. Component
behavior is specified by giving relations of input and output streams. Component-based
software architectures are formed by connecting components in a hierachical way with each
other and the environment using channels. AutoFocus is a case tool that uses a simplified
Focus semantics, which uses globally time synchronous component state machines to specify
component behavior.
Recent extensions to Focus and AutoFocus such as for service-based software design will be
used as well.

Component-Interaction Automata Team
Affiliation
Masaryk University

Team Leader
Ivana Cerná, cerna@fi.muni.cz

Team Members
Nikola Benes, Lubos Brim, Ivana Cerná, Jirí Sochor, Pavlína Vareková, Barbora Zimmerova

Component Model
Component-interaction automata (¯rst presented in [1]) are a language for modelling of
component interactions in hierarchical component-based software systems. The language
aims to support formal speci¯cation of component interactions and hence provide a basis for
formal analysis and veri¯cation of component-based systems. It is motivated by the need of
formal analytical techniques (and thus also speci¯cation language) for interaction behaviour
of components and inter-component communication in systems assembled from COTS
components.
Hence it focuses not only on actions communicated in the system, but also on components
that communicated on the actions, to enable detection of faulty components. Moreover, it
allows us to verify the systems with respect to a set of temporal properties that can specify
correct sequences of interactions among concrete components (by LTL model checking).

